elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Self-Adaptive Deep Learning Framework for Non-Intrusive Load Monitoring: Addressing Aging Appliance Challenges with Transfer Learning and Pseudo Labeling

Yasodya, W.A und Arampola, S.M.L. und Nisakya, M.S.K. und LOGEESHAN, V. und KUMARAWADU, S. und Rajakaruna Wanigasekara, Chathura (2025) Self-Adaptive Deep Learning Framework for Non-Intrusive Load Monitoring: Addressing Aging Appliance Challenges with Transfer Learning and Pseudo Labeling. IEEE Access. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/ACCESS.2025.3581471. ISSN 2169-3536.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
5MB

Offizielle URL: https://ieeexplore.ieee.org/document/11044358

Kurzfassung

Efficient energy management practices are recognized as crucial for optimizing energy utilization. Non-intrusive load monitoring (NILM) has been identified as a promising solution, particularly with the use of deep learning techniques. Conventional NILM models often face difficulties in adapting to changes in power consumption patterns, especially as appliances age. To address this challenge, a self-adaptive NILM model is proposed, which integrates deep learning techniques with transfer learning and pseudo labeling. Unlike traditional NILM models, this approach incorporates a unique self-adaptive feature that enables the model to automatically adapt to changing power patterns resulting from aging appliances. Synthetic data generation and advanced neural network architectures are used for training and validating the model, achieving exceptional accuracy rates in disaggregating power consumption. Electrical appliances used for this experiment are categorized into two groups: on-time fixed devices and on-time variable devices. Experimental results demonstrate the effectiveness of the Self-Adaptive NILM approach with on-time variable devices, such as three-phase refrigerators. The model was tested over a six-year period, focusing on a three-phase refrigerator, and an accuracy rate exceeding 97% in disaggregating power consumption was achieved. It was found that for on-time fixed devices, the conventional NILM model gives better predictions. This high level of accuracy and the findings underscore the potential of this approach for energy management systems. By addressing a significant gap in existing NILM literature, this research introduces the way for the development of more robust, resilient, and adaptive energy management solutions.

elib-URL des Eintrags:https://elib.dlr.de/214747/
Dokumentart:Zeitschriftenbeitrag
Titel:Self-Adaptive Deep Learning Framework for Non-Intrusive Load Monitoring: Addressing Aging Appliance Challenges with Transfer Learning and Pseudo Labeling
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Yasodya, W.AUniversity of MoratuwaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Arampola, S.M.L.University of MoratuwaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Nisakya, M.S.K.University of MoratuwaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
LOGEESHAN, V.University of MoratuwaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
KUMARAWADU, S.University of MoratuwaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Rajakaruna Wanigasekara, ChathuraChathura.Wanigasekara (at) dlr.dehttps://orcid.org/0000-0003-4371-6108186477469
Datum:Juni 2025
Erschienen in:IEEE Access
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1109/ACCESS.2025.3581471
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:2169-3536
Status:veröffentlicht
Stichwörter:Non-Intrusive Load Monitoring (NILM), Deep Learning, Self-Adaptive NILM, Transfer Learning, Pseudo labeling
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:keine Zuordnung
DLR - Forschungsgebiet:keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):keine Zuordnung
Standort: Geesthacht
Institute & Einrichtungen:Institut für Maritime Energiesysteme > Energiekonverter und -systeme
Hinterlegt von: Rajakaruna Wanigasekara, Chathura
Hinterlegt am:23 Jun 2025 08:05
Letzte Änderung:01 Jul 2025 13:09

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.