Wickramaarachchi, Shamaltha M. und Suraweera, S.A. Dewmini und Akalanka, D.M. Pasindu und LOGEESHAN, V. und Rajakaruna Wanigasekara, Chathura (2025) Advanced Deep Learning Framework for Predicting the Remaining Useful Life of Nissan Leaf Generation 01 Lithium-Ion Battery Modules. Computation. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/computation13060147. ISSN 2079-3197.
![]() |
PDF
- Verlagsversion (veröffentlichte Fassung)
3MB |
Offizielle URL: https://www.mdpi.com/2079-3197/13/6/147
Kurzfassung
The accurate estimation of the remaining useful life (RUL) of lithium-ion batteries (LIBs) is essential for ensuring safety and enabling effective battery health management systems. To address this challenge, data-driven solutions leveraging advanced machine learning and deep learning techniques have been developed. This study introduces a novel framework, Deep Neural Networks with Memory Features (DNNwMF), for predicting the RUL of LIBs. The integration of memory features significantly enhances the model’s accuracy, and an autoencoder is incorporated to optimize the feature representation. The focus of this work is on feature engineering and uncovering hidden patterns in the data. The proposed model was trained and tested using lithium-ion battery cycle life datasets from NASA’s Prognostic Centre of Excellence and CALCE Lab. The optimized framework achieved an impressive RMSE of 6.61%, and with suitable modifications, the DNN model demonstrated a prediction accuracy of 92.11% for test data, which was used to estimate the RUL of Nissan Leaf Gen 01 battery modules.
elib-URL des Eintrags: | https://elib.dlr.de/214620/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Advanced Deep Learning Framework for Predicting the Remaining Useful Life of Nissan Leaf Generation 01 Lithium-Ion Battery Modules | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Juni 2025 | ||||||||||||||||||||||||
Erschienen in: | Computation | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
DOI: | 10.3390/computation13060147 | ||||||||||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||
ISSN: | 2079-3197 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | autoencoder; deep learning; lithium-ion battery; memory features; Nissan Leaf battery; PCA; remaining useful life | ||||||||||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | keine Zuordnung | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | keine Zuordnung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | keine Zuordnung | ||||||||||||||||||||||||
Standort: | Geesthacht | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Maritime Energiesysteme > Energiekonverter und -systeme | ||||||||||||||||||||||||
Hinterlegt von: | Rajakaruna Wanigasekara, Chathura | ||||||||||||||||||||||||
Hinterlegt am: | 16 Jun 2025 08:27 | ||||||||||||||||||||||||
Letzte Änderung: | 23 Jun 2025 11:52 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags