Balzer, Josefina Laura (2025) Optimization of Traffic Signal Control Using Reinforcement Learning: A SUMO-Based Simulation Study on a Real-World Example. Masterarbeit, Universität Münster.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Within this project, a system to train a model with reinforcement learning to control traffic lights was implemented. Two different learning algorithms have been evaluated and compared with a vehicle-actuated logic. The investigation area is an actual intersection in the city of Münster, and it was possible to use the currently used logic and recorded traffic demand as a basis for the simulation, as well as for the final comparison. Experiments performed with both used learning methods, DQN and PPO, show the effect of different initialisations and result in a final configuration used for a comparison of the methodologies and the vehicle-actuated baselines logic. For DQN, a hyperparameter configuration to train on the basis of one hour of traffic data was found and achieved an average advantage in waiting time of 48.64% when applying it to the traffic data of 24 hours. A model trained with PPO on the identical segment of traffic data achieved an average advantage in waiting time of 57.73% when applying it to the full day. And after training the model with PPO with the whole simulation, an average advantage of 65.15% was achieved compared to the waiting time of the vehicle-actuated logic. Besides the achieved improvements through training traffic controllers with reinforcement learning instead of using a vehicle-actuated logic, there is potential for further improvement left for future work.
elib-URL des Eintrags: | https://elib.dlr.de/214547/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Hochschulschrift (Masterarbeit) | ||||||||
Titel: | Optimization of Traffic Signal Control Using Reinforcement Learning: A SUMO-Based Simulation Study on a Real-World Example | ||||||||
Autoren: |
| ||||||||
DLR-Supervisor: |
| ||||||||
Datum: | 2025 | ||||||||
Open Access: | Nein | ||||||||
Seitenanzahl: | 102 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | traffic light control, Reinforcement Learning, DQN, PPO, Simulation of Urban MObility | ||||||||
Institution: | Universität Münster | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Verkehr | ||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - KoKoVI - Koordinierter kooperativer Verkehr mit verteilter, lernender Intelligenz, V - VMo4Orte - Vernetzte Mobilität für lebenswerte Orte, V - ACT4Transformation - Automated and Connected Technologies for Mobility Transformation | ||||||||
Standort: | Braunschweig | ||||||||
Institute & Einrichtungen: | Institut für Verkehrssystemtechnik > Digitalisierter Straßenverkehr | ||||||||
Hinterlegt von: | Halbach, Maik | ||||||||
Hinterlegt am: | 03 Jul 2025 13:16 | ||||||||
Letzte Änderung: | 10 Jul 2025 12:07 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags