Mushyam, Aditya und Böttcher, Oliver und Andert, Franz (2025) PCLane: Accurate Lane Localization with LiDAR and abstract data. In: 3rd IEEE Conference on Artificial Intelligence, CAI 2025, Seiten 1578-1581. IEEE Xplore. 2025 IEEE Conference on Artificial Intelligence (CAI), 2025-05-05 - 2025-05-07, Santa Clara, CA, USA. doi: 10.1109/CAI64502.2025.00281. ISBN 979-833152400-5.
|
PDF
312kB |
Kurzfassung
Accurate Lane localization is one of the fundamental tasks for autonomous driving and trajectory planning for precise control. Deep learning models are more suitable for accurate and precise lane detection and segmentation considering their scope for generalizations especially in complex urban scenarios like junctions and intersections. This paper presents a deep learning framework for LiDAR point cloud segmentation-based lane detection and accurate lane localization using abstract map data. This paper highlights a self-supervised training strategy for the deep neural network model using abstract High Definition OpenDRIVE maps to detect and segment lanes from the lidar point cloud data. PointNet based architecture was used as the backbone of the deep neural network model and the LiDAR point clouds were collected using Velodyne LiDAR sensor of the DLR Experimental Autonomous Driving Vehicle ViewCar2.
| elib-URL des Eintrags: | https://elib.dlr.de/214531/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
| Titel: | PCLane: Accurate Lane Localization with LiDAR and abstract data | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 6 Mai 2025 | ||||||||||||||||
| Erschienen in: | 3rd IEEE Conference on Artificial Intelligence, CAI 2025 | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| DOI: | 10.1109/CAI64502.2025.00281 | ||||||||||||||||
| Seitenbereich: | Seiten 1578-1581 | ||||||||||||||||
| Verlag: | IEEE Xplore | ||||||||||||||||
| ISBN: | 979-833152400-5 | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Lane detection, Lane Localization, Point cloud segmentation, OpenDRIVE map, Self-supervised learning | ||||||||||||||||
| Veranstaltungstitel: | 2025 IEEE Conference on Artificial Intelligence (CAI) | ||||||||||||||||
| Veranstaltungsort: | Santa Clara, CA, USA | ||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
| Veranstaltungsbeginn: | 5 Mai 2025 | ||||||||||||||||
| Veranstaltungsende: | 7 Mai 2025 | ||||||||||||||||
| Veranstalter : | IEEE Computer Society | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Verkehr | ||||||||||||||||
| HGF - Programmthema: | Straßenverkehr | ||||||||||||||||
| DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
| DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | V - ACT4Transformation - Automated and Connected Technologies for Mobility Transformation | ||||||||||||||||
| Standort: | Berlin-Adlershof , Braunschweig | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Verkehrssystemtechnik > Kooperative Straßenfahrzeuge und Systeme | ||||||||||||||||
| Hinterlegt von: | Mushyam, Aditya | ||||||||||||||||
| Hinterlegt am: | 30 Jun 2025 17:04 | ||||||||||||||||
| Letzte Änderung: | 31 Jul 2025 13:49 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags