Beucler, Tom und Grundner, Arthur und Shamekh, Sara und Ukkonen, Peter und Chantry, Matthew und Lagerquist, Ryan (2025) Distilling Machine Learning's Added Value: Pareto Fronts in Atmospheric Applications. Artificial Intelligence for the Earth Systems. American Meteorological Society. doi: 10.1175/AIES-D-24-0078.1. ISSN 2769-7525.
![]() |
PDF
- Verlagsversion (veröffentlichte Fassung)
7MB |
Offizielle URL: https://journals.ametsoc.org/view/journals/aies/aop/AIES-D-24-0078.1/AIES-D-24-0078.1.xml?tab_body=pdf
Kurzfassung
The added value of machine learning for weather and climate applications is measurable through performance metrics, but explaining it remains challenging, particularly for large deep learning models. Inspired by climate model hierarchies, we propose that a full hierarchy of Pareto-optimal models, defined within an appropriately determined error-complexity plane, can guide model development and help understand the models’ added value. We demonstrate the use of Pareto fronts in atmospheric physics through three sample applications, with hierarchies ranging from semiempirical models with minimal parameters (simplest) to deep learning algorithms (most complex). First, in cloud cover parameterization, we find that neural networks identify nonlinear relationships between cloud cover and its thermodynamic environment and assimilate previously neglected features such as vertical gradients in relative humidity that improve the representation of low cloud cover. This added value is condensed into a ten-parameter equation that rivals deep learning models. Second, we establish a machine learning model hierarchy for emulating shortwave radiative transfer, distilling the importance of bidirectional vertical connectivity for accurately representing absorption and scattering, especially for multiple cloud layers. Third, we emphasize the importance of convective organization information when modeling the relationship between tropical precipitation and its surrounding environment. We discuss the added value of temporal memory when high-resolution spatial information is unavailable, with implications for precipitation parameterization. Therefore, by comparing data-driven models directly with existing schemes using Pareto optimality, we promote process understanding by hierarchically unveiling system complexity, with the hope of improving the trustworthiness of machine learning models in atmospheric applications.
elib-URL des Eintrags: | https://elib.dlr.de/214371/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Titel: | Distilling Machine Learning's Added Value: Pareto Fronts in Atmospheric Applications | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 14 Mai 2025 | ||||||||||||||||||||||||||||
Erschienen in: | Artificial Intelligence for the Earth Systems | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
DOI: | 10.1175/AIES-D-24-0078.1 | ||||||||||||||||||||||||||||
Verlag: | American Meteorological Society | ||||||||||||||||||||||||||||
ISSN: | 2769-7525 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Wolken; Konvektion; Strahlungstransport; Datenwissenschaft; Maschinelles Lernen; Neuronale Netzwerke | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Atmosphären- und Klimaforschung | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Physik der Atmosphäre > Erdsystemmodell -Evaluation und -Analyse | ||||||||||||||||||||||||||||
Hinterlegt von: | Grundner, Arthur | ||||||||||||||||||||||||||||
Hinterlegt am: | 23 Jun 2025 09:38 | ||||||||||||||||||||||||||||
Letzte Änderung: | 27 Jun 2025 09:47 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags