Drikakis, Dimitris und Fung, Daryl und Kokkinakis, Ioannis William und Spottswood, S. Michael und Brouwer, Kirk R. und Riley, Zachary B. und Daub, Dennis und Gülhan, Ali (2025) High-speed fluid-structure interaction predictions using a deep learning transformer architecture. Physics of Fluids. American Institute of Physics (AIP). doi: 10.1063/5.0267973. ISSN 1070-6631.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://pubs.aip.org/aip/pof/article/37/5/056105/3346702/High-speed-fluid-structure-interaction-predictions
Kurzfassung
This paper presents the development and application of a Transformer deep-learning model to fluid–structure problems induced by shock-turbulent boundary layer interaction. The model was trained on data from experiments conducted at a hypersonic wind tunnel under flow conditions that allowed for a Mach number of 5.3 and a Reynolds number of 19.3 * 10^6 /m. The shock-wave turbulent boundary layer interaction occurred over an elastic panel. The Transformer was trained using panel deformation measurements taken at different probe locations and the pressure in the cavity beneath the panel. The trained Transformer was subsequently applied to unseen data corresponding to various mean cavity pressures and panel deformations. The capability of the Transformer to capture aeroelastic trends is promising, with interpolation accuracy shown to depend on the volume of data used in training and the location to which the model is applied. The practical implications of this study for aeroelastic research are significant, offering new insights and potential solutions to real-world aeroelastic challenges.
elib-URL des Eintrags: | https://elib.dlr.de/214365/ | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||||||
Titel: | High-speed fluid-structure interaction predictions using a deep learning transformer architecture | ||||||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||||||
Datum: | 12 Mai 2025 | ||||||||||||||||||||||||||||||||||||
Erschienen in: | Physics of Fluids | ||||||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||||||
DOI: | 10.1063/5.0267973 | ||||||||||||||||||||||||||||||||||||
Verlag: | American Institute of Physics (AIP) | ||||||||||||||||||||||||||||||||||||
ISSN: | 1070-6631 | ||||||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||||||
Stichwörter: | Structural vibrations, Transformer, Heat transfer, Sensors, Deep learning, Artificial intelligence, Artificial neural networks, Aerodynamics, Shock waves, Turbulent flows, Fluid-Structure Interaction, FSI, FTSI | ||||||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R - keine Zuordnung | ||||||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - keine Zuordnung | ||||||||||||||||||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > Über- und Hyperschalltechnologien, KP | ||||||||||||||||||||||||||||||||||||
Hinterlegt von: | Daub, Dennis | ||||||||||||||||||||||||||||||||||||
Hinterlegt am: | 28 Mai 2025 12:45 | ||||||||||||||||||||||||||||||||||||
Letzte Änderung: | 28 Mai 2025 12:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags