Lee, Chengfa Benjamin und Peralta Brichtova, Ana Carolina und Roca, Mar und Murray, Tylar und Bolivar Rodriguez, Oswaldo David und Cerra, Daniele und Muller-Karger, Frank E. (2025) Comparing Cloud Mask Products for Seagrass Mapping Over Sentinel-2 Imagery: Toward a First National Seagrass Map for Venezuela. Journal of Geophysical Research: Machine Learning and Computation, 2 (2), e2024JH000559. Wiley. doi: 10.1029/2024JH000559. ISSN 2993-5210.
![]() |
PDF
- Verlagsversion (veröffentlichte Fassung)
6MB |
Offizielle URL: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2024JH000559
Kurzfassung
Despite providing many valuable ecosystem services, seagrasses are a threatened habitat and their global distribution is not fully known. For example, Venezuela lacks a national seagrass map. An established regional mapping approach for seagrass exists for the Google Earth Engine (GEE) platform, but requires a long time window to obtain sufficient data to overcome cloud and other challenges. Recently, GEE has released a Cloud Score+ quality band product for the purpose of cloud masking. Cloud masking could potentially reduce the time window needed for a representative multitemporal composite, which would allow for temporal analyses. We compare the performance of Cloud Score+ derived products against previously established multitemporal image composites acquired in different time ranges, and the ACOLITE-processed single image composite. The Sentinel-2 (S2) Level-1C (L1C) imagery for the whole Venezuelan coastline was processed following three different approaches: (a) using a multitemporal composition of the full S2 L1C archive available and processed in GEE using the Dark Object Subtraction; (b) integrating Cloud Score+ data set into the previous approach; and (c) using a single-image offline approach applying ACOLITE atmospheric correction. Additional raster features were generated and a two-step classification approach was performed with five classes, namely sand, seagrass, turbid water, deep water, and coral, and bootstrapped 20 times. Quantitatively, the performance within the Cloud Score+ derived products were largely similar. While the full archive approach had the best quantitative results, the ACOLITE approach produced the best maps qualitatively. With this, we produced the first national seagrass map for Venezuela.
elib-URL des Eintrags: | https://elib.dlr.de/214315/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||
Titel: | Comparing Cloud Mask Products for Seagrass Mapping Over Sentinel-2 Imagery: Toward a First National Seagrass Map for Venezuela | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 22 April 2025 | ||||||||||||||||||||||||||||||||
Erschienen in: | Journal of Geophysical Research: Machine Learning and Computation | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||
Band: | 2 | ||||||||||||||||||||||||||||||||
DOI: | 10.1029/2024JH000559 | ||||||||||||||||||||||||||||||||
Seitenbereich: | e2024JH000559 | ||||||||||||||||||||||||||||||||
Verlag: | Wiley | ||||||||||||||||||||||||||||||||
ISSN: | 2993-5210 | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Seagrass, Google Earth Engine, cloud masking, Venezuela | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung, R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren, R - Fernerkundung u. Geoforschung | ||||||||||||||||||||||||||||||||
Standort: | Berlin-Adlershof , Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Abbildende Spektroskopie | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Lee, Chengfa Benjamin | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 06 Jun 2025 10:39 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 07 Aug 2025 13:53 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags