Andert, Franz und Böttcher, Oliver und Mushyam, Aditya und Schmälzle, Philipp (2025) Semantic LiDAR Point Cloud Mapping and Cloud-Based SLAM for Autonomous Driving. In: 2025 IEEE/ION Position, Location and Navigation Symposium, PLANS 2025, Seiten 853-860. IEEE/ION Position, Location and Navigation Symposium (PLANS), 2025-04-28 - 2025-05-01, Salt Lake City, Utah, USA. doi: 10.1109/PLANS61210.2025.11028497. ISBN 979-833152317-6. ISSN 2153-3598.
![]() |
PDF
3MB |
Offizielle URL: https://ieeexplore.ieee.org/document/11028497
Kurzfassung
This paper presents a strategy towards reliable LiDAR-based navigation for applications as self-driving cars in urban canyons with limited GNSS availability. The general idea is a cloud service which provides updated, large-scalable, and geo-referenced point cloud maps. Vehicles can download snapshots on demand and use them for map-based positioning. On the mapping side of the network, multiple connected cars collect data and share them with the cloud service which performs all the data fusion and mapping tasks. While mapping and localization are state-of-the-art, this SLAM-as-a-Service idea now allows to scale SLAM-based navigation into arbitrary large areas, and it solves issues in positioning error accumulation and in the very first drives in a previously unknown environment. The implementation of this approach is tested with an experimental vehicle driven in real urban traffic, and it can be shown that state estimation is improved in relation to GNSS. With good mapping, positioning returns 15 cm geodetic accuracy on a smooth trajectory without GNSS-typical position jumps.
elib-URL des Eintrags: | https://elib.dlr.de/214130/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Semantic LiDAR Point Cloud Mapping and Cloud-Based SLAM for Autonomous Driving | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 30 April 2025 | ||||||||||||||||||||
Erschienen in: | 2025 IEEE/ION Position, Location and Navigation Symposium, PLANS 2025 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/PLANS61210.2025.11028497 | ||||||||||||||||||||
Seitenbereich: | Seiten 853-860 | ||||||||||||||||||||
ISSN: | 2153-3598 | ||||||||||||||||||||
ISBN: | 979-833152317-6 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | LiDAR, SLAM, mapping, navigation, GNSS-denied areas, self-driving cars, cloud service, local dynamic map | ||||||||||||||||||||
Veranstaltungstitel: | IEEE/ION Position, Location and Navigation Symposium (PLANS) | ||||||||||||||||||||
Veranstaltungsort: | Salt Lake City, Utah, USA | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 28 April 2025 | ||||||||||||||||||||
Veranstaltungsende: | 1 Mai 2025 | ||||||||||||||||||||
Veranstalter : | Institute of Navigation | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - ACT4Transformation - Automated and Connected Technologies for Mobility Transformation | ||||||||||||||||||||
Standort: | Berlin-Adlershof , Braunschweig | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Verkehrssystemtechnik > Kooperative Straßenfahrzeuge und Systeme | ||||||||||||||||||||
Hinterlegt von: | Böttcher, Oliver | ||||||||||||||||||||
Hinterlegt am: | 13 Jun 2025 08:22 | ||||||||||||||||||||
Letzte Änderung: | 07 Jul 2025 09:22 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags