Nolde, Michael und Rösch, Moritz und Riedlinger, Torsten und Taubenböck, Hannes (2025) Multi-sensor near-realtime burnt area monitoring using a superpixel-based graph convolutional network approach. GIScience and Remote Sensing, 62 (1), Seiten 1-24. Taylor & Francis. doi: 10.1080/15481603.2025.2498188. ISSN 1548-1603.
![]() |
PDF
- Verlagsversion (veröffentlichte Fassung)
34MB |
Offizielle URL: https://www.tandfonline.com/doi/full/10.1080/15481603.2025.2498188
Kurzfassung
Recent disastrous wildfire seasons highlight the urgent need for timely and accurate wildfire data to support relief efforts, to monitor the environmental impacts and to inform the public. While satellite-based thermal anomaly data is available in near real-time (NRT), deriving actual fire-affected areas from NRT imagery remains challenging. The proposed methodology combines a superpixel segmentation algorithm with rule-based and deep learning classification techniques to accurately derive burnt areas (BA) in NRT. This approach supports a range of mid- to high-resolution optical sensors and fuses data from diverse sources to continuously refine the burnt area during the monitoring of active fires. The NRT (DLRBAv2NRT) and the refined non-time critical (DLRBAv2NTC) BA product based on mid-resolution Sentinel-3 imagery were produced and tested against established global BA products for wildfire seasons in Greece 2023, British Columbia (Canada) 2023, and Central Chile 2023/2024. DLRBAv2NTC classified BA with the highest accuracies over all study regions (avg. IoU: 0.71; avg. F1-Score: 0.83). Despite its NRT processing capability, the DLRBAv2NRT achieved comparable accuracies (avg. IoU: 0.69; avg. F1-Score: 0.81) and could outperform the well-established and widely used global NASA burnt area product MCD64A1v061 by +2% (IoU) and +1% (F1-Score). Furthermore, the multi-sensor and fusion capability of the methodology was successfully demonstrated for the 2024 Valparaiso fire in Chile. The proposed mapping procedure demonstrates a fully-automated and flexible approach to derive burnt area delineations from satellite data in NRT with high accuracy. This allows for high-frequency monitoring of NRT burnt areas on a global scale.
elib-URL des Eintrags: | https://elib.dlr.de/214019/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Multi-sensor near-realtime burnt area monitoring using a superpixel-based graph convolutional network approach | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 15 April 2025 | ||||||||||||||||||||
Erschienen in: | GIScience and Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 62 | ||||||||||||||||||||
DOI: | 10.1080/15481603.2025.2498188 | ||||||||||||||||||||
Seitenbereich: | Seiten 1-24 | ||||||||||||||||||||
Verlag: | Taylor & Francis | ||||||||||||||||||||
Name der Reihe: | Machine Learning and Remote Sensing Data for Rapid Disaster Response | ||||||||||||||||||||
ISSN: | 1548-1603 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Burnt area monitoring, Multi-sensor, Multi-resolution, Superpixels, Graph Convolutional Network, Region Adjacency Graph | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit | ||||||||||||||||||||
Hinterlegt von: | Nolde, Dr. Michael | ||||||||||||||||||||
Hinterlegt am: | 19 Mai 2025 09:29 | ||||||||||||||||||||
Letzte Änderung: | 19 Mai 2025 09:29 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags