elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Multi-sensor near-realtime burnt area monitoring using a superpixel-based graph convolutional network approach

Nolde, Michael und Rösch, Moritz und Riedlinger, Torsten und Taubenböck, Hannes (2025) Multi-sensor near-realtime burnt area monitoring using a superpixel-based graph convolutional network approach. GIScience and Remote Sensing, 62 (1), Seiten 1-24. Taylor & Francis. doi: 10.1080/15481603.2025.2498188. ISSN 1548-1603.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
34MB

Offizielle URL: https://www.tandfonline.com/doi/full/10.1080/15481603.2025.2498188

Kurzfassung

Recent disastrous wildfire seasons highlight the urgent need for timely and accurate wildfire data to support relief efforts, to monitor the environmental impacts and to inform the public. While satellite-based thermal anomaly data is available in near real-time (NRT), deriving actual fire-affected areas from NRT imagery remains challenging. The proposed methodology combines a superpixel segmentation algorithm with rule-based and deep learning classification techniques to accurately derive burnt areas (BA) in NRT. This approach supports a range of mid- to high-resolution optical sensors and fuses data from diverse sources to continuously refine the burnt area during the monitoring of active fires. The NRT (DLRBAv2NRT) and the refined non-time critical (DLRBAv2NTC) BA product based on mid-resolution Sentinel-3 imagery were produced and tested against established global BA products for wildfire seasons in Greece 2023, British Columbia (Canada) 2023, and Central Chile 2023/2024. DLRBAv2NTC classified BA with the highest accuracies over all study regions (avg. IoU: 0.71; avg. F1-Score: 0.83). Despite its NRT processing capability, the DLRBAv2NRT achieved comparable accuracies (avg. IoU: 0.69; avg. F1-Score: 0.81) and could outperform the well-established and widely used global NASA burnt area product MCD64A1v061 by +2% (IoU) and +1% (F1-Score). Furthermore, the multi-sensor and fusion capability of the methodology was successfully demonstrated for the 2024 Valparaiso fire in Chile. The proposed mapping procedure demonstrates a fully-automated and flexible approach to derive burnt area delineations from satellite data in NRT with high accuracy. This allows for high-frequency monitoring of NRT burnt areas on a global scale.

elib-URL des Eintrags:https://elib.dlr.de/214019/
Dokumentart:Zeitschriftenbeitrag
Titel:Multi-sensor near-realtime burnt area monitoring using a superpixel-based graph convolutional network approach
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Nolde, MichaelMichael.Nolde (at) dlr.dehttps://orcid.org/0000-0002-6981-9730NICHT SPEZIFIZIERT
Rösch, Moritzmoritz.roesch (at) dlr.dehttps://orcid.org/0009-0003-2928-7009184308581
Riedlinger, TorstenTorsten.Riedlinger (at) dlr.dehttps://orcid.org/0000-0003-3836-614X184308582
Taubenböck, HannesHannes.Taubenboeck (at) dlr.dehttps://orcid.org/0000-0003-4360-9126NICHT SPEZIFIZIERT
Datum:15 April 2025
Erschienen in:GIScience and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:62
DOI:10.1080/15481603.2025.2498188
Seitenbereich:Seiten 1-24
Verlag:Taylor & Francis
Name der Reihe:Machine Learning and Remote Sensing Data for Rapid Disaster Response
ISSN:1548-1603
Status:veröffentlicht
Stichwörter:Burnt area monitoring, Multi-sensor, Multi-resolution, Superpixels, Graph Convolutional Network, Region Adjacency Graph
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Nolde, Dr. Michael
Hinterlegt am:19 Mai 2025 09:29
Letzte Änderung:19 Mai 2025 09:29

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.