elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

RISK ASSESSMENT METHODS IN AUTONOMOUS VEHICLES

Kumbhar, Shreyas und Dela Cruz, Mel Vincent und Sturm, Ralf (2025) RISK ASSESSMENT METHODS IN AUTONOMOUS VEHICLES. Masterarbeit, Private University of Applied Sciences (PFH), Stade.

[img] PDF - Nur DLR-intern zugänglich
4MB

Kurzfassung

Autonomous vehicles (AVs) are transforming transportation by allowing cars and trucks to drive themselves. However, urban areas also pose challenges in terms of risk assessment and mitigation in occluded and dynamic driving scenarios. To tackle these challenges on straight as well as curved road segments, the thesis proposes a comprehensive probabilistic risk assessment framework that integrates road geometry computational aspects, particle based forward propagation and uniform distribution models. For straight roads, the framework uniformly samples particles and checks their distance and possible collision with ego vehicle to compute the risks of particles. Also, this framework is developed further in the case of curved roads, with angular velocity calculations being added that would give an idea of how dynamic curvature would impact this assumption of risk. Risk quantification uses variables such as the velocity of objects, and distance from the road up to lateral displacement, allowing for solid estimations on various road types. Results measured in the CarMaker simulation environment validate the scalability and applicability of the method to real-world scenarios. The framework offers insights into how various parameters (particle density, delta time, radius, sigma sensor range, and velocity) impact the accuracy of risk assessment and computation efficiency by iterating through these different parameters. It presents a pathway for joining geometric and probabilistic models of AV risk for safer urban navigation. This has implications for the design of policies and interactions to enhance the reliability and adaptability of autonomous systems.

elib-URL des Eintrags:https://elib.dlr.de/213971/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:RISK ASSESSMENT METHODS IN AUTONOMOUS VEHICLES
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kumbhar, ShreyasFKNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Dela Cruz, Mel Vincentmel.delacruz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Sturm, RalfRalf.Sturm (at) dlr.dehttps://orcid.org/0000-0003-0259-5127183869414
Datum:18 Januar 2025
Open Access:Nein
Seitenanzahl:67
Status:veröffentlicht
Stichwörter:Autonomous Vehicles, Risk Assessment, Occlusions, Integrated Safety
Institution:Private University of Applied Sciences (PFH), Stade
Abteilung:Digitalization and Automation
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC
Standort: Stuttgart
Institute & Einrichtungen:Institut für Fahrzeugkonzepte > Fahrzeugarchitekturen und Leichtbaukonzepte
Hinterlegt von: Dela Cruz, Mel Vincent
Hinterlegt am:12 Mai 2025 09:29
Letzte Änderung:12 Mai 2025 09:29

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.