Jilke, Lukas und Arts, Emy und Raddatz, Florian und Hosters, Norbert und Behr, Marek und Wende, Gerko (2025) Federated two-stage machine learning model for ultrasonic guided wave structural health monitoring of composite structures. In: Proceedings of SPIE - The International Society for Optical Engineering. Digital Twins, AI, and NDE for Industry Applications and Energy Systems 2025, 2025-03-18 - 2025-03-19, Vancouver, Kanada. doi: 10.1117/12.3051068. ISSN 0277-786X.
![]() |
PDF
- Nur DLR-intern zugänglich
1MB |
Kurzfassung
Ultrasonic guided wave-based structural health monitoring (SHM) systems have the capability to effectively monitor the condition of composite aircraft structures. Recent advancements in the application of data-driven machine learning models to SHM data have improved the assessment of structural damage in composite materials. In perspective future applications, SHM systems will be applied to fleets of aircraft, potentially operated by different stakeholders. This implies that classic centralized machine learning concepts have to be adapted to SHM datasets distributed across several aircraft. Federated learning as a decentralized machine learning architecture enables collaborative cross-fleet damage detection and prediction of damage locations while preserving data privacy. This paper proposes a federated two-stage damage classification and localization method based on an ultrasonic guided wave experimental dataset from the Open Guided Waves platform of a composite plate. The first stage corresponds to a centralized unsupervised autoencoder for damage detection. The second stage utilize federated supervised regression models, incorporating convolutional neural networks (CNNs) and long short-term memory (LSTM) models for damage localization on the composite plate. The present study assesses the performance of two federated learning algorithms: FedAVG and FedProx. FedAVG aggregates model parameters from local clients by averaging them, whereas FedProx incorporates a regularization term to address heterogeneity among client data. This decentralized approach reduces data overhead while maintaining data privacy from the perspective of collaborative learning by transferring only the trained model parameters between centralized models and the decentralized server. A comparative analysis of the central versus the federated approach in terms of prediction accuracy and performance demonstrates the capability of the federated learning architecture to handle decentralized SHM datasets effectively, achieving comparative results despite the absence of locally available data.
elib-URL des Eintrags: | https://elib.dlr.de/213967/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||
Titel: | Federated two-stage machine learning model for ultrasonic guided wave structural health monitoring of composite structures | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 13 Mai 2025 | ||||||||||||||||||||||||||||
Erschienen in: | Proceedings of SPIE - The International Society for Optical Engineering | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
DOI: | 10.1117/12.3051068 | ||||||||||||||||||||||||||||
ISSN: | 0277-786X | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Data modeling, machine learning, structural health monitoring, composites, algorithm development, ultrasonics | ||||||||||||||||||||||||||||
Veranstaltungstitel: | Digital Twins, AI, and NDE for Industry Applications and Energy Systems 2025 | ||||||||||||||||||||||||||||
Veranstaltungsort: | Vancouver, Kanada | ||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 18 März 2025 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 19 März 2025 | ||||||||||||||||||||||||||||
Veranstalter : | SPIE | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Digitale Technologien, R - Maschinelles Lernen | ||||||||||||||||||||||||||||
Standort: | Aachen-Merzbrück | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Instandhaltung und Modifikation > Prozessoptimierung und Digitalisierung | ||||||||||||||||||||||||||||
Hinterlegt von: | Jilke, Lukas | ||||||||||||||||||||||||||||
Hinterlegt am: | 19 Mai 2025 08:21 | ||||||||||||||||||||||||||||
Letzte Änderung: | 19 Mai 2025 08:21 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags