elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Federated two-stage machine learning model for ultrasonic guided wave structural health monitoring of composite structures

Jilke, Lukas und Arts, Emy und Raddatz, Florian und Hosters, Norbert und Behr, Marek und Wende, Gerko (2025) Federated two-stage machine learning model for ultrasonic guided wave structural health monitoring of composite structures. In: Proceedings of SPIE - The International Society for Optical Engineering. Digital Twins, AI, and NDE for Industry Applications and Energy Systems 2025, 2025-03-18 - 2025-03-19, Vancouver, Kanada. doi: 10.1117/12.3051068. ISSN 0277-786X.

[img] PDF - Nur DLR-intern zugänglich
1MB

Kurzfassung

Ultrasonic guided wave-based structural health monitoring (SHM) systems have the capability to effectively monitor the condition of composite aircraft structures. Recent advancements in the application of data-driven machine learning models to SHM data have improved the assessment of structural damage in composite materials. In perspective future applications, SHM systems will be applied to fleets of aircraft, potentially operated by different stakeholders. This implies that classic centralized machine learning concepts have to be adapted to SHM datasets distributed across several aircraft. Federated learning as a decentralized machine learning architecture enables collaborative cross-fleet damage detection and prediction of damage locations while preserving data privacy. This paper proposes a federated two-stage damage classification and localization method based on an ultrasonic guided wave experimental dataset from the Open Guided Waves platform of a composite plate. The first stage corresponds to a centralized unsupervised autoencoder for damage detection. The second stage utilize federated supervised regression models, incorporating convolutional neural networks (CNNs) and long short-term memory (LSTM) models for damage localization on the composite plate. The present study assesses the performance of two federated learning algorithms: FedAVG and FedProx. FedAVG aggregates model parameters from local clients by averaging them, whereas FedProx incorporates a regularization term to address heterogeneity among client data. This decentralized approach reduces data overhead while maintaining data privacy from the perspective of collaborative learning by transferring only the trained model parameters between centralized models and the decentralized server. A comparative analysis of the central versus the federated approach in terms of prediction accuracy and performance demonstrates the capability of the federated learning architecture to handle decentralized SHM datasets effectively, achieving comparative results despite the absence of locally available data.

elib-URL des Eintrags:https://elib.dlr.de/213967/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Federated two-stage machine learning model for ultrasonic guided wave structural health monitoring of composite structures
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Jilke, LukasLukas.Jilke (at) dlr.dehttps://orcid.org/0000-0001-6879-3279NICHT SPEZIFIZIERT
Arts, EmyEmy.Arts (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Raddatz, FlorianFlorian.Raddatz (at) dlr.dehttps://orcid.org/0000-0002-0660-7650NICHT SPEZIFIZIERT
Hosters, NorbertRWTH Aachen UniversityNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Behr, MarekRWTH AachenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wende, Gerkogerko.wende (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:13 Mai 2025
Erschienen in:Proceedings of SPIE - The International Society for Optical Engineering
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1117/12.3051068
ISSN:0277-786X
Status:veröffentlicht
Stichwörter:Data modeling, machine learning, structural health monitoring, composites, algorithm development, ultrasonics
Veranstaltungstitel:Digital Twins, AI, and NDE for Industry Applications and Energy Systems 2025
Veranstaltungsort:Vancouver, Kanada
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:18 März 2025
Veranstaltungsende:19 März 2025
Veranstalter :SPIE
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Effizientes Luftfahrzeug
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L EV - Effizientes Luftfahrzeug
DLR - Teilgebiet (Projekt, Vorhaben):L - Digitale Technologien, R - Maschinelles Lernen
Standort: Aachen-Merzbrück
Institute & Einrichtungen:Institut für Instandhaltung und Modifikation > Prozessoptimierung und Digitalisierung
Hinterlegt von: Jilke, Lukas
Hinterlegt am:19 Mai 2025 08:21
Letzte Änderung:19 Mai 2025 08:21

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.