elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Triple Graph Convolutional Network for Hyperspectral Image Feature Fusion and Classification

Imani, Maryam und Cerra, Daniele (2025) Triple Graph Convolutional Network for Hyperspectral Image Feature Fusion and Classification. Remote Sensing, 17 (9), Seiten 1-23. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs17091623. ISSN 2072-4292.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
5MB

Offizielle URL: https://www.mdpi.com/2072-4292/17/9/1623

Kurzfassung

Most graph-based networks utilize superpixel generation methods as a preprocessing step, considering superpixels as graph nodes. In the case of hyperspectral images having high variability in spectral features, considering an image region as a graph node may degrade the class discrimination ability of networks for pixel-based classification. Moreover, most graph-based networks focus on global feature extraction, while both local and global information are important for pixel-based classification. To deal with these challenges, superpixel-based graphs are overruled in this work, and a Graph-based Feature Fusion (GF2) method relying on three different graphs is proposed instead. A local patch is considered around each pixel under test, and at the same time, global anchors with the highest informational content are selected from the entire scene. While the first graph explores relationships between neighboring pixels in the local patch and the global anchors, the second and third graphs use the global anchors and pixels of the local patch as nodes, respectively. These graphs are processed using graph convolutional networks, and their results are fused using a cross-attention mechanism. The experiments on three hyperspectral benchmark datasets show that the GF2 network has high classification performance compared to state-of-the-art methods, while imposing a reasonable number of learnable parameters.

elib-URL des Eintrags:https://elib.dlr.de/213957/
Dokumentart:Zeitschriftenbeitrag
Titel:Triple Graph Convolutional Network for Hyperspectral Image Feature Fusion and Classification
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Imani, Maryammaryam.imani (at) modares.ac.irNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Cerra, DanieleDaniele.Cerra (at) dlr.dehttps://orcid.org/0000-0003-2984-8315183673148
Datum:3 Mai 2025
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:17
DOI:10.3390/rs17091623
Seitenbereich:Seiten 1-23
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:graph convolutional network; attention mechanism; feature fusion; hyperspectral image classification
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Optische Fernerkundung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Abbildende Spektroskopie
Hinterlegt von: Cerra, Daniele
Hinterlegt am:08 Mai 2025 14:04
Letzte Änderung:09 Mai 2025 12:50

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.