Gorecki, Chris-Leon und Lau, Merle und Wasic, Catharina und Dotzauer, Mandy (2025) Cluster-based user segmentation to optimize needs-oriented transport services. In: HFES Europe 2025 - Book of Abstracts, Seite 64. HFES Europe 2025, 2025-04-09 - 2025-04-11, Bologna, Italien.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://www.hfes-europe.org/wp-content/uploads/2025/02/AbstractsBologna2025.pdf
Kurzfassung
The trend toward individualization calls for personalized, needs-oriented, and accessible public transport services. Existing mobility services often fail to meet these requirements, as personal and context-sensitive travel needs are considered insufficiently. Therefore, a user segmentation method was developed to analyse the effect of traveller characteristics (e.g., age, gender, public transport subscription) on route selection, referring to a data set about route decisions (N = 433). A three-stage modular process was used to define the segmentation method. In the first module, user travel data was pre-processed and transformed for cluster analysis. This step addressed the challenges of high dimensionality and mixed data types by applying methods such as principal component analysis or factor analysis for mixed data. In the second module, unsupervised machine learning techniques were applied to cluster users based on the extracted components. In the third module, correlation between user groups and route choice were examined. Applying the segmentation method revealed that male and female, but not non-binary, residents of large capitals with a public transport subscription tend to favour faster routes with fewer transfers. Overall, the results make an important contribution to the specification of a segmentation method for personalized routing options in public transport.
elib-URL des Eintrags: | https://elib.dlr.de/213844/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | Cluster-based user segmentation to optimize needs-oriented transport services | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | April 2025 | ||||||||||||||||||||
Erschienen in: | HFES Europe 2025 - Book of Abstracts | ||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Seitenbereich: | Seite 64 | ||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | User Segmentation, public transport, route selection preferences | ||||||||||||||||||||
Veranstaltungstitel: | HFES Europe 2025 | ||||||||||||||||||||
Veranstaltungsort: | Bologna, Italien | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 9 April 2025 | ||||||||||||||||||||
Veranstaltungsende: | 11 April 2025 | ||||||||||||||||||||
Veranstalter : | HFES Europe Chapter | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||
HGF - Programmthema: | Verkehrssystem | ||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||
DLR - Forschungsgebiet: | V VS - Verkehrssystem | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - MoDa - Models and Data for Future Mobility_Supporting Services, V - VMo4Orte - Vernetzte Mobilität für lebenswerte Orte | ||||||||||||||||||||
Standort: | Berlin-Adlershof , Braunschweig | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Verkehrssystemtechnik > Informationssysteme und Mobilitätsdienste | ||||||||||||||||||||
Hinterlegt von: | Gorecki, Chris-Leon | ||||||||||||||||||||
Hinterlegt am: | 06 Mai 2025 12:20 | ||||||||||||||||||||
Letzte Änderung: | 10 Jul 2025 11:35 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags