elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Simulating Atmospheric Processes in Earth System Models and Quantifying Uncertainties With Deep Learning Multi Member and Stochastic Parameterizations

Behrens, Gunnar und Beucler, Tom und Iglesias‐Suarez, Fernando und Yu, Sungduk und Gentine, Pierre und Pritchard, Michael und Schwabe, Mierk und Eyring, Veronika (2025) Simulating Atmospheric Processes in Earth System Models and Quantifying Uncertainties With Deep Learning Multi Member and Stochastic Parameterizations. Journal of Advances in Modeling Earth Systems, 17 (4). Wiley. doi: 10.1029/2024MS004272. ISSN 1942-2466.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
4MB

Offizielle URL: https://dx.doi.org/10.1029/2024MS004272

Kurzfassung

Deep learning is a powerful tool to represent subgrid processes in climate models, but many application cases have so far used idealized settings and deterministic approaches. Here, we develop stochastic parameterizations with calibrated uncertainty quantification to learn subgrid convective and turbulent processes and surface radiative fluxes of a superparameterization embedded in an Earth System Model (ESM). We explore three methods to construct stochastic parameterizations: (a) a single Deep Neural Network (DNN) with Monte Carlo Dropout; (b) a multi-member parameterization; and (c) a Variational Encoder Decoder with latent space perturbation. We show that the multi-member parameterization improves the representation of convective processes, especially in the planetary boundary layer, compared to individual DNNs. The respective uncertainty quantification illustrates that methods (b) and (c) are advantageous compared to a dropout-based DNN parameterization regarding the spread of convective processes. Hybrid simulations with our best-performing multi-member parameterizations remained challenging and crash within the first days. Therefore, we develop a pragmatic partial coupling strategy relying on the superparameterization for condensate emulation. Partial coupling reduces the computational efficiency of hybrid Earth-like simulations but enables model stability over 5 months with our multi-member parameterizations. However, our hybrid simulations exhibit biases in thermodynamic fields and differences in precipitation patterns. Despite this, the multi-member parameterizations enable improvements in reproducing tropical extreme precipitation compared to a traditional convection parameterization. Despite these challenges, our results indicate the potential of a new generation of multi-member machine learning parameterizations leveraging uncertainty quantification to improve the representation of stochasticity of subgrid effects.

elib-URL des Eintrags:https://elib.dlr.de/213814/
Dokumentart:Zeitschriftenbeitrag
Titel:Simulating Atmospheric Processes in Earth System Models and Quantifying Uncertainties With Deep Learning Multi Member and Stochastic Parameterizations
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Behrens, GunnarDLR, IPAhttps://orcid.org/0000-0002-5921-5327NICHT SPEZIFIZIERT
Beucler, TomUniversity of Lausanne, Lausanne, Switzerlandhttps://orcid.org/0000-0002-5731-1040NICHT SPEZIFIZIERT
Iglesias‐Suarez, FernandoDLR, IPAhttps://orcid.org/0000-0003-3403-8245NICHT SPEZIFIZIERT
Yu, SungdukUniversity of California, Irvine, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Gentine, PierreColumbia University, New York, USAhttps://orcid.org/0000-0002-0845-8345NICHT SPEZIFIZIERT
Pritchard, MichaelUniversity of California Irvine, Irvine, CA, USAhttps://orcid.org/0000-0002-0340-6327NICHT SPEZIFIZIERT
Schwabe, MierkDLR, IPAhttps://orcid.org/0000-0001-6565-5890NICHT SPEZIFIZIERT
Eyring, VeronikaDLR, IPANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:13 April 2025
Erschienen in:Journal of Advances in Modeling Earth Systems
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:17
DOI:10.1029/2024MS004272
Verlag:Wiley
ISSN:1942-2466
Status:veröffentlicht
Stichwörter:Earth system model, machine learning, subgrid processes, uncertainty quantification, superparameterization, stochasticity
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Atmosphären- und Klimaforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Physik der Atmosphäre > Erdsystemmodell -Evaluation und -Analyse
Hinterlegt von: Behrens, Gunnar
Hinterlegt am:29 Apr 2025 07:45
Letzte Änderung:29 Apr 2025 07:45

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.