elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Synthetic satellite telemetry data for machine learning

Schefels, Clemens und Schlag, Leonard und Helmsauer, Kathrin (2025) Synthetic satellite telemetry data for machine learning. CEAS Space Journal. Springer. doi: 10.1007/s12567-024-00589-1. ISSN 1868-2502.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
1MB

Kurzfassung

For many machine learning tasks, labeled data are crucial. Even though there are methods that can be trained with data with only few labels, most of the tasks require many labels. In satellite operations, a huge amount of data are generated by the telemetry parameters of a satellite that keep track of its status. Modern satellites collect telemetry data of thousands of parameters. For example, the GRACE Follow-On satellites, operated by the German Space Operations Center (GSOC) at the German Aerospace Center (DLR), define about 80,000 unique housekeeping parameters each. However, all these telemetry data lack a complete/holistic set of labels. These data are usually unpredictable, hard to reproduce, and very diverse. As a consequence, expert knowledge is necessary to label these data, e.g., with anomalies. Moreover, labeling data by hand can be very time-consuming and, therefore, expensive. To overcome these obstacles, we implemented a synthetic satellite telemetry data library that is able to (a) generate a large variety of telemetry-like data, (b) add a plethora of well-defined anomalies to these data, and (c) deliver the labels for these injected anomalies. With these data, we are now able to train, validate, and test our machine learning models. Furthermore, we can compare different models with reproducible data. Since satellite telemetry data are often strictly confidential, we can share these synthetic data easily with our research partners.

elib-URL des Eintrags:https://elib.dlr.de/213741/
Dokumentart:Zeitschriftenbeitrag
Titel:Synthetic satellite telemetry data for machine learning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schefels, ClemensClemens.Schefels (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schlag, LeonardLeonard.Schlag (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Helmsauer, Kathrinkathrin.helmsauer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:11 Januar 2025
Erschienen in:CEAS Space Journal
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1007/s12567-024-00589-1
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Bernelli, FrancoNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:Springer
ISSN:1868-2502
Status:veröffentlicht
Stichwörter:Satellite telemetry, Machine learning, Anomaly detection, Synthetic data, Labeled data, Software development
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Raumflugbetrieb und Astronautentraining > Missionstechnologie
Hinterlegt von: Schefels, Clemens
Hinterlegt am:22 Apr 2025 09:13
Letzte Änderung:22 Apr 2025 09:13

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.