Chen, Hao und Oberst, Jürgen und Gläser, Philipp und Willner, Konrad (2025) Review on Deep Learning Techniques in Planetary Topographic Modelling. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, XLVIII, Seiten 275-280. ISPRS Geospatial Week 2025, 2025-04-06 - 2025-04-11, Dubai, UAE. doi: 10.5194/isprs-archives-XLVIII-G-2025-275-2025. ISSN 1682-1750.
|
PDF
1MB |
Offizielle URL: https://isprs-archives.copernicus.org/articles/XLVIII-G-2025/275/2025/
Kurzfassung
Topographic modeling using orbital imagery is a cornerstone of planetary photogrammetry and remote sensing, underpinning scientific exploration and analysis. While classical methods like stereo-photogrammetry (SPG) and (stereo)-photoclinometry (SPC) have long been developed, deep learning (DL) techniques have recently emerged as powerful alternatives, advancing rapidly in planetary topographic applications. This study briefly reviews the evolution of DL methods, contrasting their innovative approaches with the principles of traditional SPG and SPC techniques. We assess the efficacy of two representative DL models in reconstructing high-resolution topography for a large planetary body (the Moon) and a small asteroid (Itokawa), respectively. Our findings reveal that these DL methods successfully recover detailed terrain surfaces, even with limited input imagery, and produce results consistent with SPG- and SPC-derived models. These outcomes underscore the transformative potential of DL for efficient, robust topographic modeling across diverse planetary scales.
| elib-URL des Eintrags: | https://elib.dlr.de/213602/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
| Titel: | Review on Deep Learning Techniques in Planetary Topographic Modelling | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | 28 Juli 2025 | ||||||||||||||||||||
| Erschienen in: | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| Band: | XLVIII | ||||||||||||||||||||
| DOI: | 10.5194/isprs-archives-XLVIII-G-2025-275-2025 | ||||||||||||||||||||
| Seitenbereich: | Seiten 275-280 | ||||||||||||||||||||
| ISSN: | 1682-1750 | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | Deep learning, Orbital imagery, Planetary topographic modeling, Small bodies, The Moon | ||||||||||||||||||||
| Veranstaltungstitel: | ISPRS Geospatial Week 2025 | ||||||||||||||||||||
| Veranstaltungsort: | Dubai, UAE | ||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
| Veranstaltungsbeginn: | 6 April 2025 | ||||||||||||||||||||
| Veranstaltungsende: | 11 April 2025 | ||||||||||||||||||||
| Veranstalter : | ISPRS | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Erforschung des Weltraums | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R EW - Erforschung des Weltraums | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Exploration des Sonnensystems | ||||||||||||||||||||
| Standort: | Berlin-Adlershof | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Planetenforschung > Planetengeodäsie | ||||||||||||||||||||
| Hinterlegt von: | Willner, Dr Konrad | ||||||||||||||||||||
| Hinterlegt am: | 25 Nov 2025 10:52 | ||||||||||||||||||||
| Letzte Änderung: | 25 Nov 2025 10:52 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags