elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Chemo-Mechanical Core-Shell Model Explaining the Silicon Voltage Hysteresis and Long-Term Relaxation

Köbbing, Lukas und Kuhn, Yannick und Latz, Arnulf und Horstmann, Birger (2025) Chemo-Mechanical Core-Shell Model Explaining the Silicon Voltage Hysteresis and Long-Term Relaxation. ModVal 2025 - 21st Symposium on Modeling and Experimental Validation of Electrochemical Energy Technologies, 2025-03-10 - 2025-03-12, Karlsruhe.

[img] PDF
157kB

Kurzfassung

Silicon is considered as next-generation anode material for lithium-ion batteries owing to the tenfold increase in theoretical capacity compared to graphite anodes. However, beneath the significant volume expansion of silicon during lithiation, the silicon voltage hysteresis represents a major challenge for the commercial use. The hysteresis causes a reduced efficiency, detrimental heat generation, and complicates the state-of-charge estimation. Our contribution elucidates the reason of the voltage hysteresis phenomenon and identifies approaches to overcome the related limitations. We developed a chemo-mechanical model accounting for the interaction between active silicon and a surrounding inactive phase in a core-shell geometry. The shell can be considered as solid-electrolyte interphase (SEI), inactive silicon domains, or silicon oxide. The volume changes of the active silicon during cycling cause significant stresses inside the shell, resulting in pronounced degradation [1]. Simultaneously, the visco-elastoplastic shell implies stress to the silicon particle, impacting the chemo-mechanical potential. Therefore, our model reproduces the experimentally observed silicon voltage hysteresis during cycling and after short-term relaxation [2]. Moreover, a recent improvement of our mechanical model allows to describe the long-term, logarithmic voltage relaxation over weeks [3]. Hence, our modeling approach reproduces the observed silicon voltage hysteresis and relaxation consistently. In addition, we derived a reduced hysteresis model, which outperforms the empirical Plett model in terms of physical interpretability and voltage predictions during relaxation. In conclusion, we explain the silicon voltage hysteresis and long-term relaxation with a visco-elastoplastic core-shell model. Our physical understanding supports the improvement of the performance and state estimation of pure silicon anodes desired for future applications. References: 1. L. Kolzenberg, A. Latz, B. Horstmann, Batter. Supercaps 5 (2022), 2, e202100216 2. L. Köbbing, A. Latz, B. Horstmann, Adv. Funct. Mater. 34 (2024), 7, 2308818 3. L. Köbbing, Y. Kuhn, B. Horstmann, ACS Appl. Mater. Interfaces 16 (2024), 49, 67609-67619

elib-URL des Eintrags:https://elib.dlr.de/213600/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Chemo-Mechanical Core-Shell Model Explaining the Silicon Voltage Hysteresis and Long-Term Relaxation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Köbbing, LukasLukas.Koebbing (at) dlr.dehttps://orcid.org/0000-0002-1806-6732NICHT SPEZIFIZIERT
Kuhn, YannickYannick.Kuhn (at) dlr.dehttps://orcid.org/0000-0002-9019-2290NICHT SPEZIFIZIERT
Latz, ArnulfArnulf.Latz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Horstmann, Birgerbirger.horstmann (at) dlr.dehttps://orcid.org/0000-0002-1500-0578NICHT SPEZIFIZIERT
Datum:2025
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Silicon Voltage Hysteresis, Silicon Voltage Relaxation, Silicon SEI Mechanics, Silicon Anode, Visco-Elastoplastic Model
Veranstaltungstitel:ModVal 2025 - 21st Symposium on Modeling and Experimental Validation of Electrochemical Energy Technologies
Veranstaltungsort:Karlsruhe
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:10 März 2025
Veranstaltungsende:12 März 2025
Veranstalter :Hochschule Offenburg
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Elektrochemische Energiespeicherung
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SP - Energiespeicher
DLR - Teilgebiet (Projekt, Vorhaben):E - Elektrochemische Speicher
Standort: Ulm
Institute & Einrichtungen:Institut für Technische Thermodynamik > Computergestützte Elektrochemie
Hinterlegt von: Köbbing, Lukas
Hinterlegt am:14 Apr 2025 14:56
Letzte Änderung:14 Apr 2025 14:56

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.