Valerio, Andrea (2025) Analyzing Spatial Eye-Tracking Data of Teleoperators to Assess Workload in Automotive Fleet Management. Masterarbeit, University of Trento.
![]() |
PDF
- Nur DLR-intern zugänglich
19MB |
Kurzfassung
With the rise of automated vehicles, teleoperation plays a key role in ensuring safe and efficient drives, particularly in partially automated systems where human operators provide high-level commands. This research focuses on understanding how mental states, specifically cognitive workload, impact ocular behavior during teleoperation tasks using a visual interface. Data from a previously-conducted user study is analysed, where task difficulty and frequency were manipulated in a naturalistic setting. The data-driven approach stresses the use of spatial area-of-interest metrics and its evaluation in providing mental state insights. The results display workload to be a significant factor in influencing the selected AoI metrics, including fixation duration, fixation frequency, time-to-first fixation, visit frequency, dwell time, and stationary entropy. Moreover, the findings partially support that a high workload induces a tunneling effect, although modulated by task-related and interface factors. The influence of difficulty and frequency independently act on the AoI metrics, with the former eliciting a broader effect. The study also demonstrates that workload can be predicted using machine learning models, with binary workload and frequency predictions achieving high recall rates (above 85%), and difficulty prediction reaching a maximum of 75%. A 4-class workload classification has been attempted, too, with the best predictive model reaching a recall of 49%. These outcomes highlight the potential of AoI metrics for real-time workload assessment and detection in teleoperation, paving the way for intelligent interfaces that adapt to operator mental states.
elib-URL des Eintrags: | https://elib.dlr.de/213522/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Hochschulschrift (Masterarbeit) | ||||||||
Titel: | Analyzing Spatial Eye-Tracking Data of Teleoperators to Assess Workload in Automotive Fleet Management | ||||||||
Autoren: |
| ||||||||
Datum: | 2025 | ||||||||
Open Access: | Nein | ||||||||
Seitenanzahl: | 118 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | teleoperation, workload, eye-tracking | ||||||||
Institution: | University of Trento | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Verkehr | ||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - KoKoVI - Koordinierter kooperativer Verkehr mit verteilter, lernender Intelligenz | ||||||||
Standort: | Braunschweig | ||||||||
Institute & Einrichtungen: | Institut für Verkehrssystemtechnik > Informationssysteme und Mobilitätsdienste | ||||||||
Hinterlegt von: | Walocha, Fabian | ||||||||
Hinterlegt am: | 06 Mai 2025 12:27 | ||||||||
Letzte Änderung: | 06 Mai 2025 13:55 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags