elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Analyzing Spatial Eye-Tracking Data of Teleoperators to Assess Workload in Automotive Fleet Management

Valerio, Andrea (2025) Analyzing Spatial Eye-Tracking Data of Teleoperators to Assess Workload in Automotive Fleet Management. Masterarbeit, University of Trento.

[img] PDF - Nur DLR-intern zugänglich
19MB

Kurzfassung

With the rise of automated vehicles, teleoperation plays a key role in ensuring safe and efficient drives, particularly in partially automated systems where human operators provide high-level commands. This research focuses on understanding how mental states, specifically cognitive workload, impact ocular behavior during teleoperation tasks using a visual interface. Data from a previously-conducted user study is analysed, where task difficulty and frequency were manipulated in a naturalistic setting. The data-driven approach stresses the use of spatial area-of-interest metrics and its evaluation in providing mental state insights. The results display workload to be a significant factor in influencing the selected AoI metrics, including fixation duration, fixation frequency, time-to-first fixation, visit frequency, dwell time, and stationary entropy. Moreover, the findings partially support that a high workload induces a tunneling effect, although modulated by task-related and interface factors. The influence of difficulty and frequency independently act on the AoI metrics, with the former eliciting a broader effect. The study also demonstrates that workload can be predicted using machine learning models, with binary workload and frequency predictions achieving high recall rates (above 85%), and difficulty prediction reaching a maximum of 75%. A 4-class workload classification has been attempted, too, with the best predictive model reaching a recall of 49%. These outcomes highlight the potential of AoI metrics for real-time workload assessment and detection in teleoperation, paving the way for intelligent interfaces that adapt to operator mental states.

elib-URL des Eintrags:https://elib.dlr.de/213522/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Analyzing Spatial Eye-Tracking Data of Teleoperators to Assess Workload in Automotive Fleet Management
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Valerio, Andreaandrea.valerio (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2025
Open Access:Nein
Seitenanzahl:118
Status:veröffentlicht
Stichwörter:teleoperation, workload, eye-tracking
Institution:University of Trento
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - KoKoVI - Koordinierter kooperativer Verkehr mit verteilter, lernender Intelligenz
Standort: Braunschweig
Institute & Einrichtungen:Institut für Verkehrssystemtechnik > Informationssysteme und Mobilitätsdienste
Hinterlegt von: Walocha, Fabian
Hinterlegt am:06 Mai 2025 12:27
Letzte Änderung:06 Mai 2025 13:55

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.