elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Measurements of hydrodynamic and acoustic wall pressure fluctuations using ultra-thin-precision microphone

Hu, Nan und Le Floch, Arnaud und Rossignol, Karl-Stephane (2025) Measurements of hydrodynamic and acoustic wall pressure fluctuations using ultra-thin-precision microphone. DAGA 2025, 2025-03-17 - 2025-03-20, Kopenhagen, Dänemark.

[img] PDF - Nur DLR-intern zugänglich
850kB

Kurzfassung

Wall pressure fluctuations can be measured with flush- and pinhole-mounted sensors. Typically, to install the sensors, the surface of test objectives needs to be drilled. However, this manner of installation is undesirable or impossible for many industrial applications. Therefore, a surface sensor that can be easily mounted on the surface could be very helpful in measuring wall pressure fluctuations. This paper presents wall pressure spectra measured with GRAS ultra-thin-precision (UTP) microphones which have a thickness of 1 mm. Three mounting configurations were used in the measurements: pinhole- and flush-mounted in a recess on the surface and mounted with a flow-optimized fairing (elevation angle of 7.5° ) taped on the surface, which can significantly simplify the mounting. The flush-mounting sensor-size-induced high-frequency spectral attenuation and the pinhole-mounting-induced Helmholtz resonance are corrected with published methods. The obtained wall pressure spectra are compared to the spectra measured with pinhole-mounted Kulite sensors. The effect of the mounting with farings on the measured spectra due to the disturbance on turbulent boundary layers (TBL) is quantified by comparing to the results measured with the flush-mounted microphone in the recess. For the acoustic measurement of incident sound on the wall, the pinhole-mounted configuration was discarded because Helmholtz resonance needs to be avoided for most acoustic tests. The sensor-size-induced high-frequency attenuation up to 100 kHz was measured with a laser-generated sound source. The directivity of the UTP microphones is quantified with reference to a flush-mounted Kulite without a protection screen. Furthermore, the interference pattern due to the faring with different angles of incident sound is demonstrated.

elib-URL des Eintrags:https://elib.dlr.de/213496/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Measurements of hydrodynamic and acoustic wall pressure fluctuations using ultra-thin-precision microphone
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hu, NanNan.Hu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Le Floch, Arnaudarnaud.lefloch (at) dlr.dehttps://orcid.org/0000-0002-4466-1981NICHT SPEZIFIZIERT
Rossignol, Karl-StephaneKarl-Stephane.Rossignol (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2025
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:wall pressure fluctuations, UTP microphone, flush-mounted sensors, pinhole-mounted sensors
Veranstaltungstitel:DAGA 2025
Veranstaltungsort:Kopenhagen, Dänemark
Veranstaltungsart:nationale Konferenz
Veranstaltungsbeginn:17 März 2025
Veranstaltungsende:20 März 2025
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Photovoltaik und Windenergie
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SW - Solar- und Windenergie
DLR - Teilgebiet (Projekt, Vorhaben):E - Windenergie
Standort: Braunschweig
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > Windenergie
Hinterlegt von: Hu, Nan
Hinterlegt am:22 Mai 2025 08:41
Letzte Änderung:22 Mai 2025 08:41

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.