Terhag, Felix und Knechtges, Philipp und Tempone, Raúl und Basermann, Achim (2025) Uncertainty Quantification in Machine Learning Based Segmentation: A Post-Hoc Approach for Left Ventricle Volume Estimation in MRI. SIAM/ASA Journal on Uncertainty Quantification, 13 (1), Seiten 90-113. SIAM - Society for Industrial and Applied Mathematics. doi: 10.1137/23M161433X. ISSN 2166-2525.
![]() |
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Kurzfassung
Recent studies have confirmed cardiovascular diseases remain responsible for the highest mortality rate among noncommunicable diseases. The accurate left ventricular (LV) volume estimation is critical for valid diagnosis and management of various cardiovascular conditions, but poses a significant challenge due to inherent uncertainties associated with the segmentation algorithms in magnetic resonance imaging. Recent machine learning advancements, particularly U-Net-like convolutional networks, have facilitated automated segmentation for medical images, but struggles under certain pathologies and/or different scanner vendors and imaging protocols. This study proposes a novel methodology for post-hoc uncertainty estimation in the LV volume prediction using Itô stochastic differential equations to model pathwise behavior for the prediction error. The model describes the area of the left ventricle along the heart’s long axis. The method is agnostic to the underlying segmentation algorithm, facilitating its use with various existing and future segmentation technologies. The proposed approach provides a mechanism for quantifying uncertainty, enabling medical professionals to intervene for unreliable predictions. This is of utmost importance in critical applications such as medical diagnosis, where prediction accuracy and reliability can directly impact patient outcomes. The method is also robust to dataset changes, enabling application for medical centers with limited access to labeled data. Our findings highlight the proposed uncertainty estimation methodology’s potential to enhance automated segmentation robustness and generalizability, paving the way for more reliable and accurate LV volume estimation in clinical settings as well as opening new avenues for uncertainty quantification in biomedical image segmentation, providing promising directions for future research.
elib-URL des Eintrags: | https://elib.dlr.de/213428/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Uncertainty Quantification in Machine Learning Based Segmentation: A Post-Hoc Approach for Left Ventricle Volume Estimation in MRI | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2025 | ||||||||||||||||||||
Erschienen in: | SIAM/ASA Journal on Uncertainty Quantification | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 13 | ||||||||||||||||||||
DOI: | 10.1137/23M161433X | ||||||||||||||||||||
Seitenbereich: | Seiten 90-113 | ||||||||||||||||||||
Verlag: | SIAM - Society for Industrial and Applied Mathematics | ||||||||||||||||||||
ISSN: | 2166-2525 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Machine Learning, Uncertainty Quantification, biomedical image segmentation, cardiovascular MRI, Itô stochastic differential equations | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Aufgaben SISTEC | ||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Softwaretechnologie > High-Performance Computing Institut für Softwaretechnologie | ||||||||||||||||||||
Hinterlegt von: | Terhag, Felix | ||||||||||||||||||||
Hinterlegt am: | 01 Apr 2025 14:44 | ||||||||||||||||||||
Letzte Änderung: | 01 Apr 2025 14:44 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags