elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Uncertainty Quantification in Machine Learning Based Segmentation: A Post-Hoc Approach for Left Ventricle Volume Estimation in MRI

Terhag, Felix und Knechtges, Philipp und Tempone, Raúl und Basermann, Achim (2025) Uncertainty Quantification in Machine Learning Based Segmentation: A Post-Hoc Approach for Left Ventricle Volume Estimation in MRI. SIAM/ASA Journal on Uncertainty Quantification, 13 (1), Seiten 90-113. SIAM - Society for Industrial and Applied Mathematics. doi: 10.1137/23M161433X. ISSN 2166-2525.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
1MB

Kurzfassung

Recent studies have confirmed cardiovascular diseases remain responsible for the highest mortality rate among noncommunicable diseases. The accurate left ventricular (LV) volume estimation is critical for valid diagnosis and management of various cardiovascular conditions, but poses a significant challenge due to inherent uncertainties associated with the segmentation algorithms in magnetic resonance imaging. Recent machine learning advancements, particularly U-Net-like convolutional networks, have facilitated automated segmentation for medical images, but struggles under certain pathologies and/or different scanner vendors and imaging protocols. This study proposes a novel methodology for post-hoc uncertainty estimation in the LV volume prediction using Itô stochastic differential equations to model pathwise behavior for the prediction error. The model describes the area of the left ventricle along the heart’s long axis. The method is agnostic to the underlying segmentation algorithm, facilitating its use with various existing and future segmentation technologies. The proposed approach provides a mechanism for quantifying uncertainty, enabling medical professionals to intervene for unreliable predictions. This is of utmost importance in critical applications such as medical diagnosis, where prediction accuracy and reliability can directly impact patient outcomes. The method is also robust to dataset changes, enabling application for medical centers with limited access to labeled data. Our findings highlight the proposed uncertainty estimation methodology’s potential to enhance automated segmentation robustness and generalizability, paving the way for more reliable and accurate LV volume estimation in clinical settings as well as opening new avenues for uncertainty quantification in biomedical image segmentation, providing promising directions for future research.

elib-URL des Eintrags:https://elib.dlr.de/213428/
Dokumentart:Zeitschriftenbeitrag
Titel:Uncertainty Quantification in Machine Learning Based Segmentation: A Post-Hoc Approach for Left Ventricle Volume Estimation in MRI
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Terhag, Felixfelix.terhag (at) dlr.dehttps://orcid.org/0000-0001-7053-8154181341866
Knechtges, PhilippPhilipp.Knechtges (at) dlr.dehttps://orcid.org/0000-0002-4849-0593181341867
Tempone, Raúltempone (at) uq.rwth-aachen.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Basermann, AchimAchim.Basermann (at) dlr.dehttps://orcid.org/0000-0003-3637-3231181341868
Datum:2025
Erschienen in:SIAM/ASA Journal on Uncertainty Quantification
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:13
DOI:10.1137/23M161433X
Seitenbereich:Seiten 90-113
Verlag:SIAM - Society for Industrial and Applied Mathematics
ISSN:2166-2525
Status:veröffentlicht
Stichwörter:Machine Learning, Uncertainty Quantification, biomedical image segmentation, cardiovascular MRI, Itô stochastic differential equations
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Aufgaben SISTEC
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Softwaretechnologie > High-Performance Computing
Institut für Softwaretechnologie
Hinterlegt von: Terhag, Felix
Hinterlegt am:01 Apr 2025 14:44
Letzte Änderung:01 Apr 2025 14:44

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.