elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Machine Learning for Packet Detection in Satellite Communications

Simon Camprecios, Pol (2025) Machine Learning for Packet Detection in Satellite Communications. Masterarbeit, Polytechnical University of Catalunia.

[img] PDF
2MB

Kurzfassung

Satellite-based IoT networks demand efficient and robust short-packet detection techniques, particularly in Low Earth Orbit (LEO) scenarios where devices operate with low power and transmit sporadically. This thesis explores and compares two approaches to address these challenges under realistic channel conditions. The first approach employs a traditional correlation-based detection method, widely regarded as optimal in noise-limited environments but subject to performance degradation under heavier traffic loads, collisions, and channel impairments. The second approach uses a supervised learning scheme based on convolutional neural networks (CNNs), designed to handle low signal-to-noise ratio (SNR) and diverse channel impairments. Initially, both methods are evaluated under ideal, noise-limited conditions, revealing similar detection rates. However, when multiple users transmit simultaneously and random phase shifts or Doppler effects arise, the CNN consistently outperforms correlation, demonstrating greater resilience. Correlation remains attractive due to its simplicity and lower computational overhead; it also offers an inherent Doppler estimation capability when implemented as a bank of correlators. By contrast, the CNN adapts more effectively to varying channel loads and unknown scenarios, maintaining good performance in general even under severe impairments. These results underscore the potential of machine learning for next-generation packet detection in satellite networks. Future work involves extending the CNN to estimate Doppler shifts, integrating detection and frequency estimation in a single neural framework, and further exploring hybrid solutions that combine neural networks and traditional methods for improved performance.

elib-URL des Eintrags:https://elib.dlr.de/213337/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Machine Learning for Packet Detection in Satellite Communications
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Simon Camprecios, PolPolytechnical University of CataluniaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2025
Open Access:Ja
Status:akzeptierter Beitrag
Stichwörter:machine learning; packet detection; satellite communications; random access
Institution:Polytechnical University of Catalunia
Abteilung:Escola Tecnica d’Enginyeria de Telecomunicacio de Barcelona
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Kommunikation, Navigation, Quantentechnologien
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R KNQ - Kommunikation, Navigation, Quantentechnologie
DLR - Teilgebiet (Projekt, Vorhaben):R - Global Connectivity for People and Machines
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Kommunikation und Navigation > Satellitennetze
Hinterlegt von: Munari, Dr. Andrea
Hinterlegt am:27 Mär 2025 16:10
Letzte Änderung:27 Mär 2025 16:10

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.