Coffey, Claire und Nikolaou, Nikolaos und Cea, Donatella und Dallavalle, Marco und Staab, Jeroen und Piraud, Marie und Peters, Annette und Schneider, Alexandra und Taubenböck, Hannes und Wolf, Kathrin (2025) AI-driven environmental epidemiology: a generalisable framework for predicting blood pressure using fair and explainable machine learning. HAICON25, 2025-06-03 - 2025-06-05, Karlsruhe.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://haicon.cc/
Kurzfassung
Understanding the relationship between environmental exposures, demographics, individual characteristics and health outcomes is crucial in the context of a changing climate. ML methods provide promise to model these complex relationships, but their application in environmental epidemiology is under-utilised. This study presents a generalisable supervised learning regression framework to investigate the joint impacts of environmental exposures, contextual and individual socioeconomic factors and demographics, and clinical data on key continuous health outcomes. The approach is illustrated using blood pressure, a key risk factor for cardiovascular disease (the world’s leading cause of mortality and morbidity). Blood pressure has also been shown to be impacted by environmental exposures. We leverage the NAKO data (health, demographic, and socio-economic data from 205,000 participants collected through extensive health examinations and questionnaires at nationwide study centres) linked to high-resolution environmental data. We evaluate and compare a variety of traditional statistical regression methods with ML approaches, including ElasticNet, XGBoost, Neural Networks, Random Forest, Generalized Linear Models, and Support Vector Regression. The predictive performance, explainability, and fairness of the models is compared, providing insight into their ability to capture complex interactions. This is done using performance metrics such as MSE, as well as SHAP values, permutation feature importance, and fairness metrics across demographic groups. Cross-validation is used to ensure robustness. This framework builds on the Helmholtz AI funded Noise2NAKOAI project, in which a similar framework was developed for binary health outcomes. Expected Outcomes - ML framework for predicting continuous cardiovascular metrics from environmental and health data. - Comparative analysis of predictive performance, explainability, and fairness across statistical and ML-based models. - Insights into relationships between environmental exposures and blood pressure. Analysis is ongoing; results will be reported at the conference. This research contributes to the advancement of AI in environmental epidemiology, deepening the understanding of associations between environmental exposures, socioeconomic factors, and blood pressure. This generalisable methodology may be used to investigate a wide range of health outcomes, resulting in downstream impacts on public health policy.
elib-URL des Eintrags: | https://elib.dlr.de/213275/ | ||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||||||||||||||||||||||
Titel: | AI-driven environmental epidemiology: a generalisable framework for predicting blood pressure using fair and explainable machine learning | ||||||||||||||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||||||||||||||
Datum: | 3 Juni 2025 | ||||||||||||||||||||||||||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||||||||||||||
Stichwörter: | Environmental epidemiology; Machine Learning methods; Blood pressure; Public health policy | ||||||||||||||||||||||||||||||||||||||||||||
Veranstaltungstitel: | HAICON25 | ||||||||||||||||||||||||||||||||||||||||||||
Veranstaltungsort: | Karlsruhe | ||||||||||||||||||||||||||||||||||||||||||||
Veranstaltungsart: | nationale Konferenz | ||||||||||||||||||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 3 Juni 2025 | ||||||||||||||||||||||||||||||||||||||||||||
Veranstaltungsende: | 5 Juni 2025 | ||||||||||||||||||||||||||||||||||||||||||||
Veranstalter : | Helmholtz AI | ||||||||||||||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung, R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren | ||||||||||||||||||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit | ||||||||||||||||||||||||||||||||||||||||||||
Hinterlegt von: | Staab, Jeroen | ||||||||||||||||||||||||||||||||||||||||||||
Hinterlegt am: | 14 Jul 2025 10:04 | ||||||||||||||||||||||||||||||||||||||||||||
Letzte Änderung: | 14 Jul 2025 10:04 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags