elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Flutter assessment of a rotor blade in hover based on indicial aerodynamics considering blade aerofoil, rotor inflow and wake periodicity

Arnold, Jürgen (2025) Flutter assessment of a rotor blade in hover based on indicial aerodynamics considering blade aerofoil, rotor inflow and wake periodicity. The Aeronautical Journal, 129 (1333), Seiten 593-608. Cambridge University Press. doi: 10.1017/aer.2024.95. ISSN 0001-9240.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
1MB

Offizielle URL: https://www.cambridge.org/core/journals/aeronautical-journal/article/flutter-assessment-of-a-rotor-blade-in-hover-based-on-indicial-aerodynamics-considering-blade-aerofoil-rotor-inflow-and-wake-periodicity/60EF2B84CFC7461E7F89380254B37FD1

Kurzfassung

The experimental 7AD rotor blade is assessed for flutter stability in hover to identify the influence of aerodynamic contributions related to blade aerofoil, rotor inflow and wake periodicity on flutter onset. For the aeroelastic analyses, the multibody model is tightly coupled with an unsteady aerodynamic model based on Wagner's function and related enhancements for the general motion of an aerofoil section considering heave and pitch. The mathematical setup of the approximated Wagner function in state space is extended for axial flow to include unsteady effects related to rotor inflow and wake periodicity. Since the aerodynamic model is based on indicial response functions, a separation of these contributions is possible and allows for the study of their impact on rotor blade flutter. The according flutter results are extracted in terms of frequency and damping behaviour for three test cases that differ in the unsteady aerodynamic model for circulation comprising blade aerofoil, rotor inflow and wake periodicity. As known for articulated rotor blades, also the 7AD blade exhibits a classical bending-torsion coupling. The lowest flutter onset is found for unsteady aerodynamics limited to blade aerofoil, whilst the cases with added rotor inflow and wake periodicity show both the same flutter onset at a 5% larger rotor speed. Here, the influence of rotor inflow plays the major role, since it increases the torsion damping within the critical flutter coupling. Added wake periodicity neither changes frequency nor damping and, hence, does not affect the aeroelastic coupling.

elib-URL des Eintrags:https://elib.dlr.de/212672/
Dokumentart:Zeitschriftenbeitrag
Titel:Flutter assessment of a rotor blade in hover based on indicial aerodynamics considering blade aerofoil, rotor inflow and wake periodicity
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Arnold, JürgenJuergen.Arnold (at) dlr.dehttps://orcid.org/0000-0002-1751-7458NICHT SPEZIFIZIERT
Datum:10 Februar 2025
Erschienen in:The Aeronautical Journal
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:129
DOI:10.1017/aer.2024.95
Seitenbereich:Seiten 593-608
Verlag:Cambridge University Press
Name der Reihe:The Aeronautical Journal
ISSN:0001-9240
Status:veröffentlicht
Stichwörter:Articulated Rotor Blade, Multibody Dynamics, Indicial Aerodynamics, Blade Flutter
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Effizientes Luftfahrzeug
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L EV - Effizientes Luftfahrzeug
DLR - Teilgebiet (Projekt, Vorhaben):L - Virtueller Hubschrauber und Validierung
Standort: Göttingen
Institute & Einrichtungen:Institut für Aeroelastik > Aeroelastische Simulation
Hinterlegt von: Arnold, Dipl.-Ing. Jürgen
Hinterlegt am:12 Dez 2025 16:40
Letzte Änderung:12 Dez 2025 16:40

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.