elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Conflict extraction and characteristics analysis at signalized intersections using trajectory data

Wang, Xuesong und Shi, Ruolin und Leich, Andreas und Saul, Hagen und Sohr, Alexander und Bei, XiaoXu (2025) Conflict extraction and characteristics analysis at signalized intersections using trajectory data. International Journal of Transportation Science and Technology. KeAi Communications Co.. doi: 10.1016/j.ijtst.2024.12.002. ISSN 2046-0430.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S2046043025000012?via%3Dihub

Kurzfassung

Potential safety problems at signalized intersections can be recognized most effectively by identifying serious traffic conflict events and analyzing them in different scenarios. However, most studies extract conflicts using different threshold values and lack thorough examinations and screening, an approach that may not reflect actual traffic conditions and may result in the extraction of non-conflict events. Additionally, there is a lack of comprehensive conflict analysis that integrates diverse analyses across different scenarios and operational characteristics. Therefore, based on video data in Shanghai, China, this study provides a comprehensive method for extracting and analyzing of serious conflicts. First, video recognition and trajectory reconstruction were conducted. Traffic conflict events were identified by integrating operational characteristics and road geometric design, and K-means++ was used to cluster the severity of these conflicts. Second, parameterized rear-end conflict, lane-changing conflict, and crossing conflict scenarios were reconstructed to analyze serious conflict events. These events were then analyzed separately from the perspectives of conflict distribution, path and turning modes, and vehicle types under three scenarios. The results show that the best clustering effect is achieved using jerk, longitudinal relative distance, and relative distance. Moreover, the validated TTC thresholds for classifying conflicts are 0.97 seconds for serious conflicts, 1.51 seconds for light conflicts, and 2.09 seconds for potential conflicts. The study also identifies rear-end conflicts, right-turn conflicts, and conflicts involving cars and trucks as the most serious. These findings support the extraction of key features from intersection scenarios and facilitate the testing of hazardous scenarios for automated driving.

elib-URL des Eintrags:https://elib.dlr.de/212592/
Dokumentart:Zeitschriftenbeitrag
Titel:Conflict extraction and characteristics analysis at signalized intersections using trajectory data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Wang, Xuesongwangxs (at) tongji.edu.cnhttps://orcid.org/0000-0001-9522-4098NICHT SPEZIFIZIERT
Shi, Ruolin2111224 (at) tongji.edu.cnNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Leich, Andreasandreas.leich (at) dlr.dehttps://orcid.org/0000-0001-5242-2051178769352
Saul, HagenHagen.Saul (at) dlr.dehttps://orcid.org/0000-0001-6961-7883NICHT SPEZIFIZIERT
Sohr, AlexanderAlexander.Sohr (at) dlr.dehttps://orcid.org/0000-0001-6698-2092NICHT SPEZIFIZIERT
Bei, XiaoXuXiaoXu.Bei (at) dlr.dehttps://orcid.org/0009-0004-9995-2462178769353
Datum:6 Januar 2025
Erschienen in:International Journal of Transportation Science and Technology
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1016/j.ijtst.2024.12.002
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Guo, ZhongyinTongji University, ChinaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wang, ZhongrenCalifornia Department of Transportation, United StatesNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Liu, ChiuCalifornia Department of Transportation, United StatesNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:KeAi Communications Co.
Name der Reihe:International Journal of Transportation Science and Technology
ISSN:2046-0430
Status:veröffentlicht
Stichwörter:Signalized Intersection, Conflict Extraction, Conflict Characteristics Analysis, Trajectory Data
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrssystem
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VS - Verkehrssystem
DLR - Teilgebiet (Projekt, Vorhaben):V - VMo4Orte - Vernetzte Mobilität für lebenswerte Orte
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Verkehrssystemtechnik > Digitalisierter Straßenverkehr
Hinterlegt von: Saul, Hagen
Hinterlegt am:24 Feb 2025 09:06
Letzte Änderung:24 Feb 2025 09:06

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.