elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Benchmarking EdgeAI platforms using Arduino Nano 33 BLE

JHALA, Rohitashva S. (2024) Benchmarking EdgeAI platforms using Arduino Nano 33 BLE. Masterarbeit, Universität Oldenburg.

[img] PDF - Nur DLR-intern zugänglich
5MB

Kurzfassung

An edge device is an endpoint of a network usually comprising some sensors attached to a microcontroller. These are the devices that collect or gather real-time data from their surroundings and send it further in the communication pipeline. Now to process this data locally rather than sending it to the cloud or a powerful machine for computing is where edge AI comes into play. In essence, running machine learning models locally on these resource-constrained devices by processing the incoming data is edge AI. In this work, we aim to explore the evaluation of various edge AI frameworks/platforms along the whole development process starting from the data preprocessing, all the way to ML model deployment. Now, there are multiple platforms that claim to achieve this functionality. Some by providing a web-based application while others require an installation on a local computer. Some platforms train the ML models over the cloud while others on the local PC. Theoretically, ML models with the same configuration trained over the same data could give similar results but how that compares on a spectrum of frameworks is what we want to explore. The primary goal is to determine which platform or framework delivers the best balance between computational efficiency and practical utility. To facilitate this, we benchmarked several edge AI frameworks across five criti-cal metrics like power consumption, memory usage, inference time, model accuracy, and user-friendly interface. The benchmarks include assessments of power (during both idle and active states), memory requirements, the time taken for each platform to perform a standard inference task, and accuracy measurements for a predefined human mo-tion-sense dataset. Additionally, usability was assessed based on the ease of integration,configuration, and modification provided by the platforms, considering a developer’s perspective.

elib-URL des Eintrags:https://elib.dlr.de/212496/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Benchmarking EdgeAI platforms using Arduino Nano 33 BLE
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
JHALA, Rohitashva S.rohitashva.jhala (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2024
Erschienen in:Universität Oldenburg
Open Access:Nein
Seitenanzahl:72
Status:veröffentlicht
Stichwörter:Benchmarking EdgeAI platforms, Arduino Nano 33 BLE
Institution:Universität Oldenburg
Abteilung:Fak II, Department of Informatik
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC
Standort: Oldenburg
Institute & Einrichtungen:Institut für Systems Engineering für zukünftige Mobilität
Hinterlegt von: Kuper, Inge
Hinterlegt am:04 Feb 2025 08:41
Letzte Änderung:04 Feb 2025 08:41

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.