elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Improving the Generalization Capabilities of Machine Learning by Set-Based Reasoning

Peñalver Verardo, Tomas (2024) Improving the Generalization Capabilities of Machine Learning by Set-Based Reasoning. Masterarbeit, Carl von Ossietzky Universität Oldenburg.

[img] PDF - Nur DLR-intern zugänglich
23MB

Kurzfassung

By design, most neural networks only consider a single sample in the data space for each forward pass. Generalization over all inputs is achieved by training on sufficiently large sets of such data points. Recent work in this area has shifted the focus from a point-based approach to set-based reasoning in the form of interval arithmetic in interval neural networks (INNs). To generalize data points to intervals, this work makes use of domain-specific, transitive "generalization" functions that aggregate axis-aligned regions in the input space. These intervals are fed into an interval neural network (INN) and an SMT solver (Z3) for performance comparison. The benefits of generalization functions are analyzed against three datasets, most notably FashionMNIST, under various configurations. Overall, results show that generalization functions lead to better generalization ability. Furthermore, neural models consistently outperform SMT solvers for the majority of configurations, especially when factoring in aspects such as scalability.

elib-URL des Eintrags:https://elib.dlr.de/212445/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Improving the Generalization Capabilities of Machine Learning by Set-Based Reasoning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Peñalver Verardo, Tomastomas.penalver.verardo (at) uni-oldenburg.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2024
Open Access:Nein
Seitenanzahl:159
Status:veröffentlicht
Stichwörter:Machine Learning, Interval Arithmetics, Interval Neural Networks, Set-based Reasoning
Institution:Carl von Ossietzky Universität Oldenburg
Abteilung:Department für Informatik
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC
Standort: Oldenburg
Institute & Einrichtungen:Institut für Systems Engineering für zukünftige Mobilität > Systems Theory and Design
Hinterlegt von: de Graaff, Thies
Hinterlegt am:31 Jan 2025 06:19
Letzte Änderung:31 Jan 2025 06:19

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.