Bhattacharjee, Mrinmoy und Motlicek, Petr und Madikeri, Srikanth und Helmke, Hartmut und Ohneiser, Oliver und Kleinert, Matthias und Ehr, Heiko (2024) Minimum effort adaptation of automatic speech recognition system in air traffic management. European Journal of Transport and Infrastructure Research, Vol.42 (4), Seiten 133-153. Delft University of Technology. doi: 10.59490/ejtir.2024.24.4.7531. ISSN 1567-7141.
![]() |
PDF
- Verlagsversion (veröffentlichte Fassung)
730kB |
Offizielle URL: https://journals.open.tudelft.nl/ejtir/article/view/7531
Kurzfassung
Advancements in Automatic Speech Recognition (ASR) technology is exemplified by ubiquitous voice assistants such as Siri and Alexa. Researchers have been exploring the application of ASR for Air Traffic Management (ATM) systems. Initial prototypes utilized ASR to pre-fill aircraft radar labels and achieved a technological readiness level before industrialization (TRL6). However, accurately recognizing infrequently used but highly informative domain-specific vocabulary is still an issue. This includes waypoint names specific to each airspace region and unique airline designators, e.g., “dexon” or “pobeda”. Traditionally, open-source ASR toolkits or large pre-trained models require substantial domain-specific transcribed speech data to adapt to specialized vocabularies. However, typically, a “universal” ASR engine capable of reliably recognizing a core dictionary of several hundreds of frequently used words suffices for ATM applications. The challenge lies in dynamically integrating the additional region-specific words used less frequently. These uncommon words are crucial for maintaining clear communication within the ATM environment. This paper proposes a novel approach that facilitates the dynamic integration of these new and specific word entities into the existing universal ASR system. This paves the way for “plug-and-play” customization with minimal expert intervention and eliminates the need for extensive fine-tuning of the universal ASR model. The proposed approach demonstrably improves the accuracy of these region-specific words by a factor of ≈7 (from 10% F1-score to 70%) for all rare words and ≈5 (from 13% F1-score to 64%) for waypoints.
elib-URL des Eintrags: | https://elib.dlr.de/212430/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||
Titel: | Minimum effort adaptation of automatic speech recognition system in air traffic management | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 31 Dezember 2024 | ||||||||||||||||||||||||||||||||
Erschienen in: | European Journal of Transport and Infrastructure Research | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||
Band: | Vol.42 | ||||||||||||||||||||||||||||||||
DOI: | 10.59490/ejtir.2024.24.4.7531 | ||||||||||||||||||||||||||||||||
Seitenbereich: | Seiten 133-153 | ||||||||||||||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||||||||||||||
Verlag: | Delft University of Technology | ||||||||||||||||||||||||||||||||
Name der Reihe: | European Journal of Transport and Infrastructure Research | ||||||||||||||||||||||||||||||||
ISSN: | 1567-7141 | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Speech Recognition, Model Adaptation, Integration of prior knowledge, Customization of model, Rare-word integration | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Luftverkehr und Auswirkungen | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | L AI - Luftverkehr und Auswirkungen | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Integrierte Flugführung | ||||||||||||||||||||||||||||||||
Standort: | Braunschweig | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Flugführung > Lotsenassistenz | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Diederich, Kerstin | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 30 Jan 2025 11:15 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 30 Jan 2025 11:15 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags