Aslandere, Turgay und Durak, Umut (2024) A Survey of Validation and Verification Methods for AI-Based Vehicle Functions. SAE International Journal of Connected and Automated Vehicles, 8 (4). SAE International. doi: 10.4271/12-08-04-0031.. ISSN 2574-0741.
![]() |
PDF
- Nur DLR-intern zugänglich
- Verlagsversion (veröffentlichte Fassung)
589kB |
Offizielle URL: https://saemobilus.sae.org/articles/a-survey-validation-verification-methods-ai-based-vehicle-functions-12-08-04-0031
Kurzfassung
This article provides a comprehensive review of existing literature on AI-based functions and verification methods within vehicular systems. Initially, the introduction of these AI-based functions in these systems is outlined. Subsequently, the focus shifts to synthetic environments and their pivotal role in the verification process of AI-based vehicle functions. The algorithms used within the AI-based functions focus primarily on the paradigm of deep learning. We investigate the constituent components of these synthetic environments and the intricate relationships with vehicle systems in the verification and validation domain of the system. In the following, alternative approaches are discussed, serving as complementary methods for verification without direct involvement in synthetic environment development. These approaches include data-oriented methodologies employing statistical techniques and AI-centric strategies focusing solely on the core deep learning algorithm.
elib-URL des Eintrags: | https://elib.dlr.de/212157/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | A Survey of Validation and Verification Methods for AI-Based Vehicle Functions | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 2024 | ||||||||||||
Erschienen in: | SAE International Journal of Connected and Automated Vehicles | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 8 | ||||||||||||
DOI: | 10.4271/12-08-04-0031. | ||||||||||||
Verlag: | SAE International | ||||||||||||
ISSN: | 2574-0741 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Validation and verification, AI, Deep learning, Machine learning, Vehicle functions, Tests | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Verkehr | ||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC | ||||||||||||
Standort: | Braunschweig | ||||||||||||
Institute & Einrichtungen: | Institut für Flugsystemtechnik > Sichere Systeme und System Engineering Institut für Flugsystemtechnik | ||||||||||||
Hinterlegt von: | Durak, Prof. Dr. Umut | ||||||||||||
Hinterlegt am: | 29 Jan 2025 16:50 | ||||||||||||
Letzte Änderung: | 29 Jan 2025 16:50 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags