Cinoglu, Bahadir und Durak, Umut (2024) Thrust-level dependent vibration diagnostics of UAV propeller using fast Fourier transform and K-nearest neighbour. International Journal of Sustainable Aviation, 10 (4). Inderscience Publishers. doi: 10.1504/IJSA.2024.142568. ISSN 2050-0467.
![]() |
PDF
- Nur DLR-intern zugänglich
- Verlagsversion (veröffentlichte Fassung)
473kB |
Offizielle URL: https://www.inderscienceonline.com/doi/abs/10.1504/IJSA.2024.142568
Kurzfassung
A big majority of UAV failures link to its motors, propellers, or any other mechanical parts. Early diagnosis of problems related to these parts can play a crucial role in preventing incidents. In this study, vibration data from damaged and undamaged UAV propellers is captured using a three-axis accelerometer. Then, raw vibration data features are extracted using the fast Fourier transform in order to analyse the frequency components of the signal. These features are used to train a machine learning model using the K-nearest neighbour algorithm and obtain good performance with an accuracy of 81.90% in classifying damaged and undamaged propellers in a total of three different thrust levels. Results are promising in diagnosing abnormal behaviours on propellers using vibration data and diminishing propeller-related failures.
elib-URL des Eintrags: | https://elib.dlr.de/212088/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Thrust-level dependent vibration diagnostics of UAV propeller using fast Fourier transform and K-nearest neighbour | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 8 November 2024 | ||||||||||||
Erschienen in: | International Journal of Sustainable Aviation | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 10 | ||||||||||||
DOI: | 10.1504/IJSA.2024.142568 | ||||||||||||
Verlag: | Inderscience Publishers | ||||||||||||
ISSN: | 2050-0467 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | propeller damage, machine learning, classification, UAV, diagnostics, vibration, K-nearest neighbours, fast Fourier transform, FFT, min-max scaling | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||
HGF - Programmthema: | Komponenten und Systeme | ||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||
DLR - Forschungsgebiet: | L CS - Komponenten und Systeme | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Flugzeugsysteme | ||||||||||||
Standort: | Braunschweig | ||||||||||||
Institute & Einrichtungen: | Institut für Flugsystemtechnik > Sichere Systeme und System Engineering Institut für Flugsystemtechnik | ||||||||||||
Hinterlegt von: | Durak, Prof. Dr. Umut | ||||||||||||
Hinterlegt am: | 29 Jan 2025 16:55 | ||||||||||||
Letzte Änderung: | 29 Jan 2025 16:55 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags