Bodenröder, Lauri Jan Henrik und Bartscht, Lukas und Windelberg, Jens (2024) Using Bayesian Autoencoders for Health Indicator Construction in Remaining Useful Life Prediction on Ball Bearings. In: DLRK 2024. Deutscher Luft- und Raumfahrtkongress 2024, 2024-09-30 - 2024-10-02, Hamburg, Deutschland. doi: 10.25967/630070.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://publikationen.dglr.de/?tx_dglrpublications_pi1[document_id]=630070
Kurzfassung
The useful life of electromechanical actuators (EMA) for the actuation of primary and secondary flight control surfaces in aircrafts is limited by mechanical failures of its components such as bearings. Trustworthy and reliable prediction of the Remaining Useful Life (RUL) of those components is therefore crucial for safety, maintenance and sustainability reasons. One challenge in the RUL prediction process is the construction of a trustworthy health indicator (HI) from the measured vibration data. Using deep autoencoders (AE) to construct the HI has been shown to be a promising approach. However, those approaches neglect the uncertainty in the data as well as in the neural network (NN) model. Therefore, this paper proposes using a Bayesian Adversarial Autoencoder (BAAE) to construct the HI as a probability distribution incorporating uncertainty rather than as a point estimation. The AE is formulated as a Bayesian Neural Network (BNN) to quantify the model and data uncertainty and is trained on bearing run-to-failure datasets for rotating bearings. Variational inference is used to approximate the posterior distribution of the BNN. The HI is constructed by taking the Mahalanobis distance between a healthy baseline and the current measurement. The proposed method is validated on the PRONOSTIA run-to-failure dataset. The constructed HIs show promising results regarding the suitability for RUL prediction and additionally the uncertainty of the constructed HIs can be quantified.
elib-URL des Eintrags: | https://elib.dlr.de/212040/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Using Bayesian Autoencoders for Health Indicator Construction in Remaining Useful Life Prediction on Ball Bearings | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2024 | ||||||||||||||||
Erschienen in: | DLRK 2024 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.25967/630070 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Electromechanical Actuator, Ball Bearing, Condition Monitoring, Remaining Useful Life, Health Indicator, Autoencoder, Uncertainty Quantification | ||||||||||||||||
Veranstaltungstitel: | Deutscher Luft- und Raumfahrtkongress 2024 | ||||||||||||||||
Veranstaltungsort: | Hamburg, Deutschland | ||||||||||||||||
Veranstaltungsart: | nationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 30 September 2024 | ||||||||||||||||
Veranstaltungsende: | 2 Oktober 2024 | ||||||||||||||||
Veranstalter : | Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth e.V. | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||
HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Digitale Technologien | ||||||||||||||||
Standort: | Braunschweig | ||||||||||||||||
Institute & Einrichtungen: | Institut für Flugsystemtechnik Institut für Flugsystemtechnik > Sichere Systeme und System Engineering | ||||||||||||||||
Hinterlegt von: | Bodenröder, Lauri Jan Henrik | ||||||||||||||||
Hinterlegt am: | 24 Jan 2025 14:08 | ||||||||||||||||
Letzte Änderung: | 24 Jan 2025 14:15 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags