Egerland, Christoph H. und Lomashvili, Ana und Clave, Elise und Rammelkamp, Kristin und Schröder, Susanne und Hübers, Heinz-Wilhelm (2024) How to feed emission spectra into machine learning models. Helmholtz AI Conference 2024, 2024-06-12 - 2024-06-14, Düsseldorf.
![]() |
PDF
332kB |
Kurzfassung
Machine Learning models are used on a variety of input data like image, text, tabular and video data. When we are trying to apply machine learning models in the natural sciences we, however, come across specialized data types that differ in a variety of ways and therefore we have to take extra care. In our lab we use a technique called laser-induced breakdown spectroscopy (LIBS) where we are creating a plasma by shooting a powerful laser onto rock samples and then measure the light from the plasma with a spectrometer. The output of this experiment is an emission spectrum which serves as the input to a machine learning model allowing us to quantify the elements and their abundances in the sample (see Fig. 1). In this work we have a look at different normalization, scaling and standardization procedures; which data augmentation techniques are feasible and what differentiates the emission spectrum from seemingly similar data types like the time series or a plain list of numbers.
elib-URL des Eintrags: | https://elib.dlr.de/211968/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||||||
Titel: | How to feed emission spectra into machine learning models | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | Juni 2024 | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
Status: | akzeptierter Beitrag | ||||||||||||||||||||||||||||
Stichwörter: | LIBS, Machine Learning | ||||||||||||||||||||||||||||
Veranstaltungstitel: | Helmholtz AI Conference 2024 | ||||||||||||||||||||||||||||
Veranstaltungsort: | Düsseldorf | ||||||||||||||||||||||||||||
Veranstaltungsart: | nationale Konferenz | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 12 Juni 2024 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 14 Juni 2024 | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - OptoRob [RO] | ||||||||||||||||||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Optische Sensorsysteme > In-situ Sensing | ||||||||||||||||||||||||||||
Hinterlegt von: | Egerland, Christoph | ||||||||||||||||||||||||||||
Hinterlegt am: | 16 Jan 2025 11:55 | ||||||||||||||||||||||||||||
Letzte Änderung: | 16 Jan 2025 11:55 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags