Latrach, Aymen (2025) Enhancing Visual Ego-Localisation through Cross-View Image Registration. Masterarbeit, Higher School of Communication of Tunis (SUP'COM).
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
In the dynamic landscape of modern transportation and navigation, the need for a robust ego-localization solution has become increasingly critical. This precision is essential not only for navigation efficiency but also for ensuring the safety and reliability of automated systems. Conventional GPS-based solutions often fall short, particularly in urban environments where signal obstructions and multipath effects can significantly compromise accuracy. This project addresses the growing demand for resilient ego-localization solutions designed to improve spatial awareness and navigation accuracy. The initiative involves the preparation of a new dataset, outlining our methodology. Our ego-localization approach include ground-view image transformation via a Bird's-Eye-View Mapping module, the use of rough GPS coordinates for accessing aerial imagery, integration of deep learning-based keypoint matching framework, and final image registration. In testing various components of our architecture, we report a mean improvement of 57.08% and a median improvement of 73.10% in localization accuracy, compared to GPS-based localization.
elib-URL des Eintrags: | https://elib.dlr.de/211927/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Hochschulschrift (Masterarbeit) | ||||||||
Titel: | Enhancing Visual Ego-Localisation through Cross-View Image Registration | ||||||||
Autoren: |
| ||||||||
Datum: | Januar 2025 | ||||||||
Open Access: | Nein | ||||||||
Status: | im Druck | ||||||||
Stichwörter: | Aerial imagery, Cross-view image registration, Ego-localization, Deep learning | ||||||||
Institution: | Higher School of Communication of Tunis (SUP'COM) | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Verkehr | ||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - KoKoVI - Koordinierter kooperativer Verkehr mit verteilter, lernender Intelligenz | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||
Hinterlegt von: | Bahmanyar, Gholamreza | ||||||||
Hinterlegt am: | 18 Jan 2025 08:48 | ||||||||
Letzte Änderung: | 29 Jan 2025 13:59 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags