elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Mapping quantum circuits to shallow-depth measurement patters based on graph states

Kaldenbach, Thierry Nicolas und Heller, Matthias (2024) Mapping quantum circuits to shallow-depth measurement patters based on graph states. DPG Spring Meeting 2024 of the Condensed Matter Section, 2024-03-17 - 2024-03-22, Berlin, Deutschland.

[img] PDF - Nur DLR-intern zugänglich
1MB

Kurzfassung

The paradigm of measurement-based quantum computing (MBQC) starts from a highly entangled resource state on which unitary operations are executed through adaptive measurements and corrections ensuring determinism. This is set in contrast to the more common quantum circuit model, in which unitary operations are directly implemented through quantum gates prior to final measurements. In this work, we incorporate concepts from MBQC into the circuit model to create a hybrid simulation technique, permitting us to split any quantum circuit into a classically efficiently simulatable Clifford-part and a second part consisting of a stabilizer state and local (adaptive) measurement instructions—a so-called standard for —which is executed on a quantum computer. We further process the stabilizer state with the graph state formalism, thus, enabling a significant decrease in circuit depth for certain applications. We show that groups of mutually-commuting operators can be implemented using fully-parallel, i.e. non-adaptive, measurements within our protocol. In addition, we discuss how groups of mutually commuting observables can be simulatenously measured by adjusting the resource state, rather than performing a costly basis transformation prior to the measurement as it is done in the circuit model. Finally, we demonstrate the utility of our technique on two examples of high practical relevance—the Quantum Approximate Optimization Algorithm and the Variational Quantum Eigensolver (VQE) for the ground-state energy estimation of the water molecule. For the VQE, we find a reduction of the depth by a factor of 4 to 5 using measurement patterns vs. the standard circuit model. At the same time, since we incorporate the simultaneous measurements, our patterns allow us to save shots by a factor of at least 3.5 compared to measuring Pauli strings individually in the circuit model.

elib-URL des Eintrags:https://elib.dlr.de/211747/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Mapping quantum circuits to shallow-depth measurement patters based on graph states
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kaldenbach, Thierry Nicolasthierry.kaldenbach (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Heller, Matthiasmatthias.heller (at) igd.fraunhofer.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:März 2024
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:quantum computing, quantum simulation, quantum algorithms, measurement-based quantum computing, graph states, dynamic circuits
Veranstaltungstitel:DPG Spring Meeting 2024 of the Condensed Matter Section
Veranstaltungsort:Berlin, Deutschland
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:17 März 2024
Veranstaltungsende:22 März 2024
Veranstalter :Deutsche Physikalische Gesellschaft
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Quantencomputing-Initiative
DLR - Forschungsgebiet:QC AW - Anwendungen
DLR - Teilgebiet (Projekt, Vorhaben):QC - QuantiCoM
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Werkstoff-Forschung > Metallische und hybride Werkstoffe
Hinterlegt von: Kaldenbach, Thierry
Hinterlegt am:13 Jan 2025 08:54
Letzte Änderung:13 Jan 2025 08:54

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.