Kaldenbach, Thierry Nicolas und Heller, Matthias (2024) Mapping quantum circuits to shallow-depth measurement patters based on graph states. DPG Spring Meeting 2024 of the Condensed Matter Section, 2024-03-17 - 2024-03-22, Berlin, Deutschland.
![]() |
PDF
- Nur DLR-intern zugänglich
1MB |
Kurzfassung
The paradigm of measurement-based quantum computing (MBQC) starts from a highly entangled resource state on which unitary operations are executed through adaptive measurements and corrections ensuring determinism. This is set in contrast to the more common quantum circuit model, in which unitary operations are directly implemented through quantum gates prior to final measurements. In this work, we incorporate concepts from MBQC into the circuit model to create a hybrid simulation technique, permitting us to split any quantum circuit into a classically efficiently simulatable Clifford-part and a second part consisting of a stabilizer state and local (adaptive) measurement instructions—a so-called standard for —which is executed on a quantum computer. We further process the stabilizer state with the graph state formalism, thus, enabling a significant decrease in circuit depth for certain applications. We show that groups of mutually-commuting operators can be implemented using fully-parallel, i.e. non-adaptive, measurements within our protocol. In addition, we discuss how groups of mutually commuting observables can be simulatenously measured by adjusting the resource state, rather than performing a costly basis transformation prior to the measurement as it is done in the circuit model. Finally, we demonstrate the utility of our technique on two examples of high practical relevance—the Quantum Approximate Optimization Algorithm and the Variational Quantum Eigensolver (VQE) for the ground-state energy estimation of the water molecule. For the VQE, we find a reduction of the depth by a factor of 4 to 5 using measurement patterns vs. the standard circuit model. At the same time, since we incorporate the simultaneous measurements, our patterns allow us to save shots by a factor of at least 3.5 compared to measuring Pauli strings individually in the circuit model.
elib-URL des Eintrags: | https://elib.dlr.de/211747/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Mapping quantum circuits to shallow-depth measurement patters based on graph states | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | März 2024 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Nein | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | quantum computing, quantum simulation, quantum algorithms, measurement-based quantum computing, graph states, dynamic circuits | ||||||||||||
Veranstaltungstitel: | DPG Spring Meeting 2024 of the Condensed Matter Section | ||||||||||||
Veranstaltungsort: | Berlin, Deutschland | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 17 März 2024 | ||||||||||||
Veranstaltungsende: | 22 März 2024 | ||||||||||||
Veranstalter : | Deutsche Physikalische Gesellschaft | ||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||
DLR - Schwerpunkt: | Quantencomputing-Initiative | ||||||||||||
DLR - Forschungsgebiet: | QC AW - Anwendungen | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | QC - QuantiCoM | ||||||||||||
Standort: | Köln-Porz | ||||||||||||
Institute & Einrichtungen: | Institut für Werkstoff-Forschung > Metallische und hybride Werkstoffe | ||||||||||||
Hinterlegt von: | Kaldenbach, Thierry | ||||||||||||
Hinterlegt am: | 13 Jan 2025 08:54 | ||||||||||||
Letzte Änderung: | 13 Jan 2025 08:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags