Schubnell, Jan und Fliegener, Sascha und Rosenberger, Johannes und Feth, Sascha und Braun, Moritz und Beiler, Marten und Baumgartner, Jörg (2024) Data-driven fatigue assessment of welded steel joints based on transfer learning. 77th IIW Annual Assembly and International Conference on Welding and Joining, 2024-07-07 - 2024-07-12, Rhodes, Greece.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Data-driven or Machine Learning (ML) approaches already achieved significant success in many engineering areas even fatigue assessment of industrial parts and structures. Machine learning approaches work well under the common assumption that the training data covers the relevant feature space of the application. Rebuilding new models or establish new databases for similar feature spaces needs a high effort. In such cases knowledge transfer or transfer learning can be used. In this study, transfer learning approach is used to determine the fatigue life of welded steel joints (target task) with a ML-algorithm that is trained in non-welded steel specimen. 22 fatigue test data series were used. The results of the transfer learning approach were compared with a conventional machine learning approach, that was trained also on data from welded joints. Furthermore, the results were compared to an advanced analytical approach (IBESS) for the fracture mechanic-based fatigue life assessment of welded joints and fatigue strength values from recommendations.
elib-URL des Eintrags: | https://elib.dlr.de/211741/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||||||
Titel: | Data-driven fatigue assessment of welded steel joints based on transfer learning | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 2024 | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Data-driven approach, Fatigue, Welded joints, Machine Learning, Transfer Learning | ||||||||||||||||||||||||||||||||
Veranstaltungstitel: | 77th IIW Annual Assembly and International Conference on Welding and Joining | ||||||||||||||||||||||||||||||||
Veranstaltungsort: | Rhodes, Greece | ||||||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 7 Juli 2024 | ||||||||||||||||||||||||||||||||
Veranstaltungsende: | 12 Juli 2024 | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | V - keine Zuordnung | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - keine Zuordnung | ||||||||||||||||||||||||||||||||
Standort: | Geesthacht | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Maritime Energiesysteme | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Tanvir, Mahamudul Hasan | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 10 Jan 2025 08:44 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 10 Jan 2025 08:44 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags