Carrillo Perez, Borja Jesus und Bueno Rodriguez, Angel und Barnes, Sarah und Stephan, Maurice (2024) Enhanced Small Ship Segmentation with Optimized ScatYOLOv8+CBAM on Embedded Systems. In: 2024 IEEE International Conference on Real-Time Computing and Robotics, RCAR 2024. IEEEXplore. 2024 IEEE International Conference on Real-Time Computing and Robotics (RCAR 2024), 2024-06-24 - 2024-06-28, Alesund, Norway. doi: 10.1109/RCAR61438.2024.10670759. ISBN 979-835037260-1.
![]() |
PDF
- Nur DLR-intern zugänglich
1MB |
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/10670759
Kurzfassung
To enhance maritime situational awareness, real-time segmentation of small or distant ships from optical monitoring footage, poses significant performance challenges, especially on embedded systems. Efficient processing of full-resolution images is essential for precise small ship segmentation. In this paper, we introduce a framework that combines an optimized version of ScatYOLOv8+CBAM with a custom batch-processed Slicing Aided Hyper Inference (SAHI). This approach is aimed at efficient and accurate small ship segmentation, deployed on embedded systems, and is validated using a real-world maritime dataset (ShipSG). With our optimized ScatYOLOv8+CBAM, we substantially improve inference efficiency with a 36% faster inference speed compared to its predecessor in the lightest model size, without compromising segmentation accuracy. Additionally, the integration of batch-processed SAHI, despite an increase in computation time, improves the accuracy of small ship segmentation up to 11%, allowing more effective utilization of full-resolution imagery without compromising the computational resources of embedded platforms. Our findings set a new benchmark for embedded maritime monitoring and pave the way for future research to optimize real-time high-resolution processing in resource-constrained environments.
elib-URL des Eintrags: | https://elib.dlr.de/211646/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Enhanced Small Ship Segmentation with Optimized ScatYOLOv8+CBAM on Embedded Systems | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | September 2024 | ||||||||||||||||||||
Erschienen in: | 2024 IEEE International Conference on Real-Time Computing and Robotics, RCAR 2024 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/RCAR61438.2024.10670759 | ||||||||||||||||||||
Verlag: | IEEEXplore | ||||||||||||||||||||
ISBN: | 979-835037260-1 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Small Ship Segmentation, YOLOv8, Scattering Transform, Maritime Awareness, Embedded Systems, Real-time Processing | ||||||||||||||||||||
Veranstaltungstitel: | 2024 IEEE International Conference on Real-Time Computing and Robotics (RCAR 2024) | ||||||||||||||||||||
Veranstaltungsort: | Alesund, Norway | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 24 Juni 2024 | ||||||||||||||||||||
Veranstaltungsende: | 28 Juni 2024 | ||||||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||
DLR - Schwerpunkt: | keine Zuordnung | ||||||||||||||||||||
DLR - Forschungsgebiet: | keine Zuordnung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | keine Zuordnung | ||||||||||||||||||||
Standort: | Bremerhaven | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für den Schutz maritimer Infrastrukturen > Maritime Sicherheitstechnologien | ||||||||||||||||||||
Hinterlegt von: | Carrillo Perez, Borja Jesus | ||||||||||||||||||||
Hinterlegt am: | 14 Jan 2025 08:10 | ||||||||||||||||||||
Letzte Änderung: | 14 Jan 2025 08:10 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags