Beiler, Marten und Tanvir, Mahamudul Hasan und Braun, Moritz (2024) Weld Surface Geometry's Impact on Generalizability of Machine Learning Models for Fatigue Life Prediction. International Institute of Welding IIW, 2024-07-07 - 2024-07-12, Rhodes, Greece.
Dies ist die aktuellste Version dieses Eintrags.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Designing welded steel structures for fatigue resistance under cyclic loading requires accurate assessment of local weld geometry effects, which traditional methods often oversimplify. This study employs Machine Learning (ML) to predict fatigue life based on XGBoost models pretrained on flux cord arc welded (FCAW) and submerged arc welded (SAW) butt welds. Extending the dataset to include Laser Hybrid (LH) welds and specimens with weld defects, the research explores ML model transferability across different welding methods and defect types defined by DIN standards. Results highlight challenges in predicting fatigue life accurately when weld surface geometry varies or significant defects are present, emphasizing the need for robust anomaly detection in 3D laser scanning data. The study underscores the nuanced impact of locally occurring weld defects and imperfections on fatigue life predictions, revealing limitations in current ML.
elib-URL des Eintrags: | https://elib.dlr.de/211598/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Weld Surface Geometry's Impact on Generalizability of Machine Learning Models for Fatigue Life Prediction | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2024 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Fatigue life prediction, Butt welded joints, Machine Learning, Weld defects | ||||||||||||||||
Veranstaltungstitel: | International Institute of Welding IIW | ||||||||||||||||
Veranstaltungsort: | Rhodes, Greece | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 7 Juli 2024 | ||||||||||||||||
Veranstaltungsende: | 12 Juli 2024 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
DLR - Forschungsgebiet: | V - keine Zuordnung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - keine Zuordnung | ||||||||||||||||
Standort: | Geesthacht | ||||||||||||||||
Institute & Einrichtungen: | Institut für Maritime Energiesysteme | ||||||||||||||||
Hinterlegt von: | Tanvir, Mahamudul Hasan | ||||||||||||||||
Hinterlegt am: | 13 Jan 2025 07:52 | ||||||||||||||||
Letzte Änderung: | 13 Jan 2025 07:52 |
Verfügbare Versionen dieses Eintrags
- Weld Surface Geometry's Impact on Generalizability of Machine Learning Models for Fatigue Life Prediction. (deposited 13 Jan 2025 07:52) [Gegenwärtig angezeigt]
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags