Wang, Xiru und Braun, Moritz (2024) Explainable machine learning-based fatigue assessment of 316L stainless steel fabricated by laser-powder bed fusion. International Journal of Fatigue, 190. Elsevier. doi: 10.1016/j.ijfatigue.2024.108588. ISSN 0142-1123.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Additive manufacturing (AM) and in particular laser-powder bed fusion has become a popular manufacturing techniques in recent years due to its significant advantages; however, the mechanical behavior of AM components often varies from components fabricated using conventional processes. For example, the fatigue behavior of components made by AM processes is heavily influenced by process-related defects and residual stresses in addition to applied stress amplitudes, stress ratio and surface conditions. Accounting for the interaction of these effects in fatigue design is difficult by means of traditional fatigue assessment concepts. Machine learning algorithms offer a possibility to account for such interactions and are easily applied once trained and validated. In this study, machine learning algorithms based on gradient boosted trees with the SHapley Additive exPlanation framework are used to predict defect location and fatigue life of additive manufactured AISI 316L specimens in as-built and post-treated manufacturing states, while also facilitating the understanding of the importance and interactions of various influencing factors.
elib-URL des Eintrags: | https://elib.dlr.de/211596/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Explainable machine learning-based fatigue assessment of 316L stainless steel fabricated by laser-powder bed fusion | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 2024 | ||||||||||||
Erschienen in: | International Journal of Fatigue | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 190 | ||||||||||||
DOI: | 10.1016/j.ijfatigue.2024.108588 | ||||||||||||
Verlag: | Elsevier | ||||||||||||
ISSN: | 0142-1123 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Additive manufacturing, Fatigue life prediction, Fatigue strength assessment, Machine learning approaches, Gradient boosted trees, SHAP | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Verkehr | ||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||
DLR - Forschungsgebiet: | V - keine Zuordnung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - keine Zuordnung | ||||||||||||
Standort: | Geesthacht | ||||||||||||
Institute & Einrichtungen: | Institut für Maritime Energiesysteme | ||||||||||||
Hinterlegt von: | Tanvir, Mahamudul Hasan | ||||||||||||
Hinterlegt am: | 10 Jan 2025 08:38 | ||||||||||||
Letzte Änderung: | 05 Mär 2025 13:38 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags