elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Analysis of switch passage patterns for positioning and condition monitoring applications using axle-box acceleration data

Heusel, Judith und Baasch, Benjamin und Roth, Michael und Jahan, Kanwal und Groos, Jörn Christoffer (2025) Analysis of switch passage patterns for positioning and condition monitoring applications using axle-box acceleration data. In: IAI2025 - 8th International Congress and Workshop on Industrial AI and eMaintenance. 8th International Congress and Workshop on Industrial AI and eMaintenance, IAI 2025, 2025-05-13 - 2025-05-15, Luleå, Schweden.

[img] PDF - Nur DLR-intern zugänglich
1MB

Kurzfassung

Switches are critical infrastructure elements in the railway domain. Since they represent the nodes of the railway network, track changing is only possible at switches and their failure can have large impacts at the infrastructure availability. However, switches are exposed to harsh working conditions and prone to defects. In addition, their role as nodes of the railway network makes switches interesting for rail vehicle positioning. In this context, capturing vibration data from vehicle-borne sensors of in-service vehicles can serve two purposes: On the one hand, detecting switch passages and directions from the sensor data can help to resolve the path of the vehicle. On the other hand, the data of the detected switches can be used for switch condition monitoring. In this paper, we present a large experimental data set of switch passages collected with axle-box acceleration (ABA) sensors installed on a shunting locomotive operating on a mid-size port railway network. The switches are passed at various vehicle speeds and are of different types. The patterns of the different switches are analyzed in terms of repeatability of the patterns of the same switches and distinctiveness between switches. It is shown that classification into different switches as well as into trailing and facing passages is possible by means of neural network classifiers. Speed dependence on the patterns is investigated and modeled. Finally, applications for railway vehicle positioning and condition monitoring are demonstrated.

elib-URL des Eintrags:https://elib.dlr.de/211552/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Analysis of switch passage patterns for positioning and condition monitoring applications using axle-box acceleration data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Heusel, JudithJudith.Heusel (at) dlr.dehttps://orcid.org/0009-0007-7573-6652NICHT SPEZIFIZIERT
Baasch, BenjaminBenjamin.Baasch (at) dlr.dehttps://orcid.org/0000-0003-1970-3964NICHT SPEZIFIZIERT
Roth, MichaelM.Roth (at) dlr.dehttps://orcid.org/0000-0002-4812-346XNICHT SPEZIFIZIERT
Jahan, KanwalKanwal.Jahan (at) dlr.dehttps://orcid.org/0009-0000-6977-239XNICHT SPEZIFIZIERT
Groos, Jörn ChristofferJoern.Groos (at) dlr.dehttps://orcid.org/0000-0003-3871-0756194673046
Datum:15 Mai 2025
Erschienen in:IAI2025 - 8th International Congress and Workshop on Industrial AI and eMaintenance
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:axle-box acceleration data, railway switch classification, condition monitoring, rail vehicle positioning
Veranstaltungstitel:8th International Congress and Workshop on Industrial AI and eMaintenance, IAI 2025
Veranstaltungsort:Luleå, Schweden
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:13 Mai 2025
Veranstaltungsende:15 Mai 2025
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Schienenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V SC Schienenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - CaRe4Rail - Capacity and Resilience 4 Rail, D - SKIAS
Standort: Braunschweig
Institute & Einrichtungen:Institut für Verkehrssystemtechnik > Digitalisierter Schienenverkehr und -betrieb
Hinterlegt von: Heusel, Judith
Hinterlegt am:20 Okt 2025 14:12
Letzte Änderung:20 Okt 2025 14:12

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.