elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

The effect of salts on the mobility and shapes of mudflows in low pressure environments

Krýza, O. und Brož, Petr und Fox-Powell, Mark und Pěnkavová, V. und Conway, Susan und Mazzini, A. und Hauber, Ernst und Sylvest, M.E. und Patel, M.R. und Bohovic, Roman und Viru, Jan und Pajusalu, Mihkel (2024) The effect of salts on the mobility and shapes of mudflows in low pressure environments. Europlanet Science Congress 2024, 2024-09-08 - 2024-09-13, Berlin, Germany. doi: 10.5194/epsc2024-1134.

[img] PDF
1MB

Offizielle URL: https://meetingorganizer.copernicus.org/EPSC2024/EPSC2024-1134.html

Kurzfassung

Introduction Mud volcanism is a widely distributed geological phenomenon on Earth1. Likewise, it has been suggested that mud volcanoes might exist on some other solid-surface bodies in the Solar System, such as Mars2 and the dwarf planet, Ceres3. Since this phenomenon requires liquid water, extraterrestrial mud-volcano-like (MVL) structures represent key targets for studying the hydrology and potential habitability of subsurface environments on other planetary bodies. Thus, identifying the potential morphological signatures of these landforms beyond Earth is an important step in understanding the nature of aqueous environments within the Solar System. Previously performed low-pressure experiments have shown that in case of “cold” surfaces (-15 °C), low viscosity mud propagates similarly to pahoehoe lava types on Earth4, while in case of “warm” (+20 °C) and unconsolidated surfaces, mud “levitates'' and hence can be transported to longer distances5. The effect of composition, however, was not further tested nor discussed. We hypothesize that the potential muds on Mars or other planetary bodies may naturally contain a certain amount of salts which can affect their antifreezing and rheological properties. Therefore we address the question how the salt component in muds may affect their propagation over cold surface in reduced atmospheric pressures, namely those valid for recent Mars. Methods To test our hypothesis, we carried out 54 experiments by experimental procedure adapting the settings (Fig. 1) established for mud flow experiments performed in the Large Mars Vacuum Chamber at the Open University, UK by4,5. During the experiments, portions of mud were released onto a pre-cooled sand surface when the desired pressure (5.9±1 mbar) was reached. The mud was composed of D.I. water, bentonite and with various concentrations (0.5-10%) of salts, namely NaCl, MgSO4 (epsomite), Na2SO4 and CaSO4 were tested. Experiment progress was recorded by cameras situated at the top and sides of the sandbox and temperatures of sand and mud reservoir were measured by thermocouples. In complementary methods, we investigated the pressure-drop-induced evaporative cooling of the brine component on isolated samples in low pressure. Further, we calculated theoretical p-T paths by thermodynamic modeling and measured rheological properties of salty muds for reference Earth atmospheric pressure. Results and discussion Our experiments confirmed expected contrasting behavior of salty mud in decreased pressure (Fig. 2). Individual flows are characterized by unique spatial dispersion and morphological patterns for mutually comparative salt content. Results also revealed thresholds when different muds produce similar patterns and spreading style for highly different concentrations. Performed brine evaporative-cooling experiments showed that the maximum antifreeze potential has NaCl and therefore solutions with this salt are capable of sustaining their liquid state in much smaller pressures than those with other tested salts. The rheological measurements, on the other hand, revealed a contrasting impact of salt addition to viscosity drop of mud samples until these are supersaturated by salt (typically >5-10% concentration in dependence on salt type) and viscosity is further increased. Due to the synergistic effect of decreased viscosity (Fig. 3a) and anti-freezing effect (Fig. 3b) flows are spatially longest for various salts and, not necessarily directly proportional, to their concentrations. For example, 2.5% NaCl mud has a higher anti-freezing effect and lower viscosity compared to 10% MgSO4 (epsomite), resulting in long and narrow flows (Fig. 3c). The increased viscosity of MgSO4 effectively slows the flow, supports the formation of a protective crust and the development of serial, long lobes that maintain liquid mud in their interiors (Fig. 2b,3c). Both salts then exhibit similar spatial dispersion but entirely different styles of propagation and surface geometric pattern. These results are contrasting to previously published experiments and reveal that the increased content of salts leads to different regimes of mud propagation, not necessarily similar to pahoehoe lavas. All these findings therefore suggest that the salt type and concentrations dissolved within the muddy mixture are important factors in controlling the ultimate shapes, textures and dynamics of mud flows emplaced e.g. on Mars or on other bodies with a thin or non-existent atmosphere. Higher salinity levels extend the unfrozen state and promote the wider spatial dispersion of muds until they reach a certain point of saturation with salts. All this suggests that on Mars, contrary to Earth, salts can play an important role in shaping MVL structures. Variations in salt types and concentrations might help to, at least partly, explain the large variability in the shapes of these hypothesized martian MVL structures.

elib-URL des Eintrags:https://elib.dlr.de/211430/
Dokumentart:Konferenzbeitrag (Poster)
Titel:The effect of salts on the mobility and shapes of mudflows in low pressure environments
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Krýza, O.Institute of Geophysics ASCR, v.v.i., Prague, Czech RepublicNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Brož, PetrInstitute of Geophysics ASCR, v.v.i., Prague, Czech RepublicNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Fox-Powell, MarkSchool of Physical Science, STEM, The Open University, Milton Keynes, United KingdomNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Pěnkavová, V.Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135/1, 16502 Prague 6, Czech RepublicNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Conway, SusanLaboratoire de Planétologie et Géodynamique-UMR CNRS 6112, Nantes, Francehttps://orcid.org/0000-0002-0577-2312NICHT SPEZIFIZIERT
Mazzini, A.Centre for Earth Evolution and Dynamics (CEED), University of Oslo, NorwayNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hauber, ErnstErnst.Hauber (at) dlr.dehttps://orcid.org/0000-0002-1375-304XNICHT SPEZIFIZIERT
Sylvest, M.E.Open University, Milton-Keynes (UK)NICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Patel, M.R.Planetary and Space Sciences Research Institute, Open University, Walton Hall, Milton Keynes MK7 6AA, UKNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Bohovic, RomanWorld From Space, Brno, CzechiaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Viru, JanCrystalSpace OÜ, Tartu, EstoniaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Pajusalu, MihkelTartu Observatory, University of Tartu, EstoniaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:September 2024
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Band:17
DOI:10.5194/epsc2024-1134
Seitenbereich:EPSC2024-1134
Name der Reihe:EPSC Abstracts
Status:veröffentlicht
Stichwörter:Mars, water, salt, environment, laboratory experiments, mud, mud flows
Veranstaltungstitel:Europlanet Science Congress 2024
Veranstaltungsort:Berlin, Germany
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:8 September 2024
Veranstaltungsende:13 September 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - Planetare Exploration, R - Planetary Evolution and Life
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Planetenforschung > Planetengeologie
Hinterlegt von: Hauber, Ernst
Hinterlegt am:07 Jan 2025 09:05
Letzte Änderung:07 Jan 2025 09:05

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.