Schneider, Moritz und Halekotte, Lukas und Comes, Tina und Lichte, Daniel und Fiedrich, Frank (2024) Emergency Response Inference Mapping (ERIMap): A Bayesian network-based method for dynamic observation processing. Reliability Engineering & System Safety, 255, Seite 110640. Elsevier. doi: 10.1016/j.ress.2024.110640. ISSN 0951-8320.
![]() |
PDF
- Verlagsversion (veröffentlichte Fassung)
3MB |
Offizielle URL: https://dx.doi.org/10.1016/j.ress.2024.110640
Kurzfassung
In emergencies, high stake decisions often have to be made under time pressure and strain. In order to support such decisions, information from various sources needs to be collected and processed rapidly. The information available tends to be temporally and spatially variable, uncertain, and sometimes conflicting, leading to potential biases in decisions. Currently, there is a lack of systematic approaches for information processing and situation assessment which meet the particular demands of emergency situations. To address this gap, we present a Bayesian network-based method called ERIMap that is tailored to the complex information-scape during emergencies. The method enables the systematic and rapid processing of heterogeneous and potentially uncertain observations and draws inferences about key variables of an emergency. It thereby reduces complexity and cognitive load for decision makers. The output of the ERIMap method is a dynamically evolving and spatially resolved map of beliefs about key variables of an emergency that is updated each time a new observation becomes available. The method is illustrated in a case study in which an emergency response is triggered by an accident causing a gas leakage on a chemical plant site.
elib-URL des Eintrags: | https://elib.dlr.de/211322/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Emergency Response Inference Mapping (ERIMap): A Bayesian network-based method for dynamic observation processing | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | November 2024 | ||||||||||||||||||||||||
Erschienen in: | Reliability Engineering & System Safety | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 255 | ||||||||||||||||||||||||
DOI: | 10.1016/j.ress.2024.110640 | ||||||||||||||||||||||||
Seitenbereich: | Seite 110640 | ||||||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||||||
ISSN: | 0951-8320 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Emergency response; Situation awareness; Decision support system; Bayesian network; GIS | ||||||||||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | keine Zuordnung | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | keine Zuordnung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | keine Zuordnung | ||||||||||||||||||||||||
Standort: | Rhein-Sieg-Kreis | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für den Schutz terrestrischer Infrastrukturen > Resilienz- und Risikomethodik Institut für den Schutz terrestrischer Infrastrukturen | ||||||||||||||||||||||||
Hinterlegt von: | Halekotte, Lukas | ||||||||||||||||||||||||
Hinterlegt am: | 06 Jan 2025 15:14 | ||||||||||||||||||||||||
Letzte Änderung: | 06 Jan 2025 15:27 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags