elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Accurate flood mapping in arid regions using Sentinel-1 Synthetic Aperture Radar

Garg, Shagun und Dasgupta, Antara und Motagh, Mahdi und Martinis, Sandro und Borgomeo, Edoardo und Selvakumaran, Sivasakthy (2024) Accurate flood mapping in arid regions using Sentinel-1 Synthetic Aperture Radar. AGU24 Annual Meeting, 2024-12-09 - 2024-12-13, Washington D.C., USA.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://agu.confex.com/agu/agu24/meetingapp.cgi/Paper/1749553

Kurzfassung

Floods are among the most frequent and costliest natural disasters. Satellite remote sensing offers a cost-effective and widely adopted method for near real-time flood monitoring. Over the past decade, Sentinel-1 Synthetic Aperture Radar (SAR) imagery has emerged as a valuable tool in operational flood management, overcoming the challenges posed by optical sensors. SAR is an active imaging technique that provides cloud-free images day and night by utilizing specular reflection from smooth water surfaces. However, flood mapping using SAR is not universally effective. In areas with contrasting radar backscatter between water and non-water surfaces, SAR can distinguish floods, but this advantage is lost where the backscatter of landcover is similar to that of water, such as in dry sandy regions. Since dry sand appears similar to water, flood mapping in these areas becomes nearly impossible using amplitude data alone, a long-standing problem in the flood mapping community. The CEMS Global Flood Monitoring System (GFM) currently excludes arid regions from processing to avoid misclassification, highlighting a significant challenge. We conducted a detailed investigation using three different arid floods in three countries—Turkmenistan, Pakistan, and Iran—to understand how to best utilize SAR (Sentinel-1) information to address this challenge. Through multiple case studies, we employed the random forest method to train, test, and validate our model predictions against flood masks derived from cloud-free optical imagery. We designed several scenarios to investigate the contribution of different information layers in improving flood mapping accuracy in arid regions, along with feature importance analysis to understand the role of each feature in reducing model complexity. Our results demonstrate the effectiveness of fusing amplitude and coherence information in flood mapping compared to using coherence or amplitude alone. By utilizing key features derived through permutation feature importance, flood mapping accuracy improved by approximately 50% and reduced response time, which is crucial for effective emergency management. The findings highlight the potential of the proposed approach across different sensors and scenes, offering significant promise for global flood mapping in arid regions, particularly in countries with limited resources. As future missions and advancements in SAR systems evolve, flood detection capabilities will further improve, enhancing flood monitoring in arid areas.

elib-URL des Eintrags:https://elib.dlr.de/211272/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Accurate flood mapping in arid regions using Sentinel-1 Synthetic Aperture Radar
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Garg, ShagunUniversity of CambridgeNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Dasgupta, AntaraRWTH Universtität AachenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Motagh, Mahdimotagh (at) gfz-potsdam.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Martinis, Sandrosandro.martinis (at) dlr.dehttps://orcid.org/0000-0002-6400-361XNICHT SPEZIFIZIERT
Borgomeo, EdoardoUniversity of CambridgeNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Selvakumaran, SivasakthyUniversity of CambridgeNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2024
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:SAR, coherence, Sentinel-1, arid areas
Veranstaltungstitel:AGU24 Annual Meeting
Veranstaltungsort:Washington D.C., USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:9 Dezember 2024
Veranstaltungsende:13 Dezember 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Martinis, Sandro
Hinterlegt am:20 Jan 2025 13:47
Letzte Änderung:20 Jan 2025 13:47

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.