elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Formation Path Planning using Model Predictive Control

Wirth, Aida Fee Victoria (2024) Formation Path Planning using Model Predictive Control. Masterarbeit, Technische Universität Darmstadt.

[img] PDF - Nur DLR-intern zugänglich
2MB

Kurzfassung

The use of Unmanned Aerial Vehicle (UAV) formations has gained great interest over recent years due to their potential applications in both military and civilian uses, including surveillance, mapping and search-and-rescue missions. UAV formations refer to multiple cooperative UAVs which move together to achieve a collective goal, while staying close and maintaining a specified geometric shape. Researchers worldwide work to find effective and robust solutions for the formation flight problem. The main challenges include finding a safe path for the formation to fulfill the given task and controlling the UAVs to keep a specified relative position to each other during the motion of the formation. Here, Model Predictive Control (MPC) emerged as a promising approach for path planning for UAVs. The optimal path is generated by repeatedly solving an optimal control problem, taking the UAVs’ dynamics and physical limitations into account, as well as other constraints, e. g., for obstacle and collision avoidance. We propose MPC for the path planning of UAV formations. By directly considering the formation-keeping objective, the formation control is integrated into the path planning process. In this work, we present two different methods that extend an existing MPC-based path planning algorithm designed for area coverage problems in 2D environments. Both methods use a centralized MPC approach, in which the paths of each UAV in the formation are computed simultaneously. The first method is based on the leader-follower approach, in which one UAV, denoted as the leader, covers the search area and the other UAVs follow to maintain a desired relative position to the leader. In the second method, all UAVs are equal agents flying in a polygonal formation and working cooperatively to cover the search area. The performance of the proposed methods is tested in different simulated scenarios with a formation of three UAVs. The UAVs show the desired behavior of flying in formation, while avoiding collisions with obstacles and other UAVs. During obstacle avoidance maneuvers the formation shape is temporarily disrupted, in order for the UAVs to avoid a collision with an obstacle, however, is restored after the maneuver. By using a centralized MPC approach, the overall behavior of the formation is optimized, because the given objectives, including keeping the formation shape, as well as obstacle and collision avoidance constraints are considered simultaneously.

elib-URL des Eintrags:https://elib.dlr.de/211112/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Formation Path Planning using Model Predictive Control
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Wirth, Aida Fee VictoriaTU DarmstadtNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:16 Dezember 2024
Open Access:Nein
Status:eingereichter Beitrag
Stichwörter:Formation Path Planning, Model Predictive Control, Mixed Integer Linear Programming, Unmanned Aerial Vehicle, Quadcopter
Institution:Technische Universität Darmstadt
Abteilung:Department of Electrical Engineering and Information Technology
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Luftverkehr und Auswirkungen
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AI - Luftverkehr und Auswirkungen
DLR - Teilgebiet (Projekt, Vorhaben):L - Integrierte Flugführung
Standort: Braunschweig
Institute & Einrichtungen:Institut für Flugführung > Unbemannte Luftfahrzeugsysteme
Hinterlegt von: Gasche, Sebastian
Hinterlegt am:19 Dez 2024 08:44
Letzte Änderung:19 Dez 2024 08:44

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.