elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Revisiting the Linear Chain Trick in epidemiological models: Implications of underlying assumptions for numerical solutions

Plötzke, Lena und Wendler, Anna Clara und Schmieding, Rene und Kühn, Martin Joachim (2024) Revisiting the Linear Chain Trick in epidemiological models: Implications of underlying assumptions for numerical solutions. Mathematics and Computers in Simulation. Elsevier. ISSN 0378-4754. (eingereichter Beitrag)

[img] PDF - Nur DLR-intern zugänglich - Preprintversion (eingereichte Entwurfsversion)
12MB

Kurzfassung

In order to simulate the spread of infectious diseases, many epidemiological models use systems of ordinary differential equations (ODEs) to describe the underlying dynamics. These models incorporate the implicit assumption, that the stay time in each disease state follows an exponential distribution. However, a substantial number of epidemiological, data-based studies indicate that this assumption is not plausible. One method to alleviate this limitation is to employ the Linear Chain Trick (LCT) for ODE systems, which realizes the use of Erlang distributed stay times. As indicated by data, this approach allows for more realistic models while maintaining the advantages of using ODEs. In this work, we propose an advanced LCT model incorporating eight infection states with demographic stratification. We review key properties of LCT models and demonstrate that predictions derived from a simple ODE-based model can be significantly distorted, potentially leading to wrong political decisions. Our findings demonstrate that the influence of distribution assumptions on the behavior at change points and on the prediction of epidemic peaks is substantial, while the assumption has no effect on the final size of the epidemic. As the corresponding ODE systems are often solved by adaptive Runge-Kutta methods such as the Cash Karp method, we also study the implications on the time-to-solution using Cash Karp 5(4) for different LCT models. Eventually and for the application side, we highlight the importance of incorporating a demographic stratification by age groups to improve the prediction performance of the model. We validate our model by showing that realistic infection dynamics are better captured by LCT models than by a simple ODE model.

elib-URL des Eintrags:https://elib.dlr.de/210988/
Dokumentart:Zeitschriftenbeitrag
Titel:Revisiting the Linear Chain Trick in epidemiological models: Implications of underlying assumptions for numerical solutions
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Plötzke, LenaLena.Ploetzke (at) dlr.dehttps://orcid.org/0000-0003-0440-1429NICHT SPEZIFIZIERT
Wendler, Anna Claraanna.wendler (at) dlr.dehttps://orcid.org/0000-0002-1816-8907NICHT SPEZIFIZIERT
Schmieding, ReneRene.Schmieding (at) dlr.dehttps://orcid.org/0000-0002-2769-0270NICHT SPEZIFIZIERT
Kühn, Martin JoachimMartin.Kuehn (at) dlr.dehttps://orcid.org/0000-0002-0906-6984NICHT SPEZIFIZIERT
Datum:2024
Erschienen in:Mathematics and Computers in Simulation
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Verlag:Elsevier
ISSN:0378-4754
Status:eingereichter Beitrag
Stichwörter:Ordinary differential equations, Exponential distribution, Linear Chain Trick, Gamma Chain Trick, Erlang distribution, Infectious disease modeling, Numerical solution
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Aufgaben SISTEC
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Softwaretechnologie > High-Performance Computing
Institut für Softwaretechnologie
Hinterlegt von: Plötzke, Lena
Hinterlegt am:17 Dez 2024 11:30
Letzte Änderung:17 Dez 2024 11:30

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.