Digambar Patil, Sonali und Sellent, Anita und Gerndt, Andreas und Albuquerque, Georgia (2024) Improved RGB-D Indoor Semantic Segmentation using Cascaded Loss Fusion. In: 6th IEEE International Conference on Artificial Intelligence and eXtended and Virtual Reality, AIxVR 2024. IEEE. EEE International Conference on Artificial Intelligence and eXtended and Virtual Reality (AIxVR), 2024-01-17 - 2024-01-19, Los Angeles, CA, USA. doi: 10.1109/AIxVR59861.2024.00024. ISBN 979-835037202-1.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/10445573
Kurzfassung
Semantic segmentation of images promises numerous benefits for augmented reality applications. However, in such applications typical scenes are challenging for current segmentation algorithms due to high variability in object appearances and distribution. We propose a new cascaded loss fusion strategy to improve the training schedule of state-of-the-art realtime RGB-D semantic segmentation architectures. We employ methods developed in the context of multi-task learning to solve the multiclass and multi-loss learning problems in semantic segmentation. Through our quantitative evaluation on the NYUv2 [3] and SUNRGB-D [4] benchmark datasets, we show improvement over the state-of-the-art approaches. Furthermore, our approach improves results qualitatively on both the benchmark datasets as well as on our own recordings of some scenarios that are typical for head-mounted cameras.
elib-URL des Eintrags: | https://elib.dlr.de/210966/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Improved RGB-D Indoor Semantic Segmentation using Cascaded Loss Fusion | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2024 | ||||||||||||||||||||
Erschienen in: | 6th IEEE International Conference on Artificial Intelligence and eXtended and Virtual Reality, AIxVR 2024 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/AIxVR59861.2024.00024 | ||||||||||||||||||||
Verlag: | IEEE | ||||||||||||||||||||
ISBN: | 979-835037202-1 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Indoor Semantic Segmentatio, Cascaded Loss Fusion, Augmented Reality | ||||||||||||||||||||
Veranstaltungstitel: | EEE International Conference on Artificial Intelligence and eXtended and Virtual Reality (AIxVR) | ||||||||||||||||||||
Veranstaltungsort: | Los Angeles, CA, USA | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 17 Januar 2024 | ||||||||||||||||||||
Veranstaltungsende: | 19 Januar 2024 | ||||||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Digitaler Atlas 2.0, D - Digitaler Atlas 2.0, R - Digitale Transformation in der Raumfahrt [SY] | ||||||||||||||||||||
Standort: | Braunschweig | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Softwaretechnologie | ||||||||||||||||||||
Hinterlegt von: | Albuquerque, Dr.-Ing. Georgia | ||||||||||||||||||||
Hinterlegt am: | 17 Dez 2024 14:30 | ||||||||||||||||||||
Letzte Änderung: | 17 Dez 2024 14:30 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags