elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

First insights from the Berlin Atmospheric Simulation Experimental Chamber (BASE)

Hofmann, Florence und Rauer, Heike und Grenfell, John Lee und Taysum, Benjamin und Elsaesser, Andreas (2024) First insights from the Berlin Atmospheric Simulation Experimental Chamber (BASE). Europlanet Science Congress 2024, 2024-09-08 - 2024-09-13, Berlin. doi: 10.5194/epsc2024-946.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://meetingorganizer.copernicus.org/EPSC2024/EPSC2024-946.html

Kurzfassung

Ongoing mission such as TESS [1], CHEOPS [2] and JWST [3] as well as forthcoming missions such as PLATO [4] and ARIEL [5] have remarkably expanded our capacity to investigate planetary objects beyond our solar system, revealing new classes of planets, including hot-Jupiters [6, 7, 8, 9], mini-Neptunes [10, 11, 12] and super-Earths. Excitingly, among these several thousands of detected exoplanets, there are some rocky planets orbiting their star within the habitable zone. As planetary atmospheres likely play a pivotal role in shaping habitability, significant efforts have been made to characterize the physical properties and the complex chemistry occurring in rocky exoplanet atmospheres. As we discover a growing list of Earth-like exoplanets orbiting prevalent later star types, such as K and M dwarfs, discussions about the habitability of exoplanets around these longer-lived stars have been initiated [13]. There is an ongoing debate about the significance of potential biosignature compounds, like e.g. oxygen or ozone under various atmospheric conditions. With most of the oxygen in modern Earth’s atmosphere thought to be biotically produced through photosynthesis, oxygen and ozone are considered to be possible biomarker compounds [14]. Regarding ongoing discussions about habitability of early-Earth, early life probably evolved in an anoxic, high-UV environment [15]. Under such conditions, it can be shown that molecular oxygen also forms through photolysis of CO2 and subsequent recombination of O atoms [16]. The question to what extent these potential false positive biosignatures can be produced abiotically is therefore of great potential relevance for the interpretation of data from future missions. Further, biosignature abundances in exoplanet atmospheres may be greatly influenced by high energy particles (HEPs) emitted from stellar flares [17, 18]. Correct interpretation of spectral measurements therefore requires a new generation of photochemical-climate models that consider important factors such as the incoming stellar radiation the atmospheric mass and composition as well as the role of clouds and surface properties. However, as exoplanets often have no counterpart in our solar system, nor can in-situ data be acquired, model parameters are often inferred from limited data sets. Consequently, careful comparisons with laboratory experiments plays a pivotal role in advancing our understanding of atmospheric processes [7]. Atmospheric simulation chambers are controlled laboratory environments that allow researchers to simulate and study complex phenomena that occur in the Earth's atmosphere and beyond. We present the Berlin Atmospheric Simulation Experimental Chamber (BASE) which is a versatile platform designed to replicate various atmospheric conditions representative for Earth-like exoplanet atmospheres. The BASE chamber is capable of simulating a range of atmospheric pressures ranging from 1 bar (e.g. modern Earth surface) down to a few mbar (e.g. Mars surface) and temperatures (293 K - 373K). It is equipped with a sophisticated gas mixing system that allows for precise control of atmospheric composition, including the introduction of trace gases and water vapor. Possible scenarios include primary, steam early-Earth-like, thin, cool Mars-like and thick, hot Venus-like atmospheres. In contrast to many atmospheric simulation chambers that lack simultaneous photon and electron irradiation capabilities, studies using BASE can examine photochemical processes driven by UV and Lyman alpha radiation, and electrons radiation. Experiments conducted at BASE focus on potential alterations of gaseous biomarkers and their distinction from potential abiotic sources [19] in various conditions. The chamber allows continuous spectroscopic real-time monitoring of gas samples across a wide wavelength range, covering VUV/VIS/NIR and simultaneous mass spectrometric analysis, allowing for precise measurements of gas composition, chemical reactions, and optical properties. We present first results on the photochemical formation and destruction processes of ozone in Earth’s stratosphere and extended experiments under enhanced UV irradiation. As has been recognized very early on, the lifetime of ozone in given atmospheric conditions is very sensitive to minor changes, with ozone production being a highly non-linear process. Therefore, future experiments at BASE aim to investigate ozone chemistry at elevated temperatures, radiation levels and increased amounts of H2O and NOx species in different atmospheric compositions. In combination with atmospheric modelling we envision deeper insight on the role of oxygen and ozone as gaseous biomarkers and the potential formation of ozone layers under atmospheric conditions of rocky exoplanets orbiting distant stars.

elib-URL des Eintrags:https://elib.dlr.de/210880/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:First insights from the Berlin Atmospheric Simulation Experimental Chamber (BASE)
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hofmann, FlorenceDepartment of Physics, Experimental Biophysics and Space Science, Freie Universität Berlin, Berlin, Germanyhttps://orcid.org/0009-0003-3075-8330NICHT SPEZIFIZIERT
Rauer, Heikeheike.rauer (at) dlr.dehttps://orcid.org/0000-0002-6510-1828NICHT SPEZIFIZIERT
Grenfell, John LeeLee.Grenfell (at) dlr.dehttps://orcid.org/0000-0003-3646-5339NICHT SPEZIFIZIERT
Taysum, Benjaminbenjamin.taysum (at) dlr.dehttps://orcid.org/0000-0002-0856-4340NICHT SPEZIFIZIERT
Elsaesser, AndreasDepartment of Physics, Experimental Biophysics and Space Science, Freie Universität Berlin, Berlin, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:September 2024
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Band:17
DOI:10.5194/epsc2024-946
Seitenbereich:EPSC2024-946
Name der Reihe:EPSC Abstracts
Status:veröffentlicht
Stichwörter:PLATO; TESS, CHEOPS; JWT; ARIEL; Atmospheric simulation; BASE chamber; exoplanet atmosphere
Veranstaltungstitel:Europlanet Science Congress 2024
Veranstaltungsort:Berlin
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:8 September 2024
Veranstaltungsende:13 September 2024
Veranstalter :Euro Planet
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erforschung des Weltraums
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EW - Erforschung des Weltraums
DLR - Teilgebiet (Projekt, Vorhaben):R - PLATO: F-FEE
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Planetenforschung > Extrasolare Planeten und Atmosphären
Institut für Planetenforschung > Leitungsbereich PF
Hinterlegt von: Schwarz, Sandra
Hinterlegt am:16 Dez 2024 15:04
Letzte Änderung:16 Dez 2024 15:05

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.