elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Predicting and Reconstructing Clearances from Air Traffic Data Using a Supervised Learning Approach

Renkhoff, Justus und Wüstenbecker, Niclas und Jameel, Mohsan und Schier-Morgenthal, Sebastian (2025) Predicting and Reconstructing Clearances from Air Traffic Data Using a Supervised Learning Approach. CEAS Aeronautical Journal. Springer. doi: 10.1007/s13272-025-00854-x. ISSN 1869-5590.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
1MB

Offizielle URL: https://link.springer.com/article/10.1007/s13272-025-00854-x

Kurzfassung

The current air traffic system is challenged by the growing volume of air traffic and a shortage of air traffic controllers (ATCOs). A potential solution is to increase the level of automation in air traffic control (ATC) by introducing a digital ATCO that is capable of working as a team partner with human ATCOs e.g., helping to resolve conflicts or optimize trajectories. Given the success of artificial intelligence (AI) in solving such complex, dynamic decision-making processes, it is a promising technology for developing these digital ATCOs. To enable the best possible cooperation between human and digital ATCOs, the latter could be fine-tuned to the decision-making patterns of human ATCOs, as human-conformal decisions tend to be more accepted by human ATCOs. One way to draw conclusions about the behavior of human ATCOs is to analyze Automatic Dependent Surveillance-Broadcast (ADS-B) data and the corresponding ATC-issued clearances and instructions. This data can be used as examples of the behavior of human ATCOs to train or adapt a digital ATCO. However, there are few publicly available datasets that provide both ADS-B and the associated clearances and instructions. Additionally, those that do exist are limited to specific regions and, therefore, may not be sufficient, as human ATCOs may have regional decision patterns or strategies that are not transferable to other areas. Therefore, to address this issue, this paper proposes an approach that uses XGBoost models trained on the Swedish Civil Air Traffic Control (SCAT) dataset, which includes both ATC-issued clearances and ADS-B data, to detect maneuvers that are likely to result from ATC instructions. Accordingly, this research is a step toward labeling any ADS-B data from publicly available sources with synthetic instructions, providing a method for generating training data to fine-tune digital ATCOs to human behavior. Using the proposed setup it was possible to achieve 95% accuracy on the detection of instructions. Also it was possible to achieve accuracies of over 90% percent when using normalized coordinates independent from the Swedish airspace, indicating that the models could be used with data from other regions. Additionally, it is shown that the flight path extracted from the ADS-B data can be used to reconstruct the type and value of the instruction that was likely issued.

elib-URL des Eintrags:https://elib.dlr.de/210557/
Dokumentart:Zeitschriftenbeitrag
Titel:Predicting and Reconstructing Clearances from Air Traffic Data Using a Supervised Learning Approach
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Renkhoff, Justusjustus.renkhoff (at) dlr.dehttps://orcid.org/0000-0002-7021-734X196599190
Wüstenbecker, Niclasniclas.wuestenbecker (at) dlr.dehttps://orcid.org/0009-0000-3440-8635196599191
Jameel, Mohsanmohsan.jameel (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schier-Morgenthal, Sebastiansebastian.schier (at) dlr.dehttps://orcid.org/0009-0002-9987-4869196599192
Datum:7 Juni 2025
Erschienen in:CEAS Aeronautical Journal
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1007/s13272-025-00854-x
Verlag:Springer
ISSN:1869-5590
Status:veröffentlicht
Stichwörter:Air traffic control; Automated data labeling; ATC clearances
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Luftverkehr und Auswirkungen
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AI - Luftverkehr und Auswirkungen
DLR - Teilgebiet (Projekt, Vorhaben):L - Integrierte Flugführung
Standort: Braunschweig
Institute & Einrichtungen:Institut für Flugführung > Lotsenassistenz
Hinterlegt von: Renkhoff, Justus
Hinterlegt am:11 Nov 2025 11:38
Letzte Änderung:11 Nov 2025 11:38

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.