Müller, Simone und Kolb, Daniel und Müller, Matthias und Kranzlmüller, Dieter (2024) AI-based Density Recognition. In: 32. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2024, WSCG 2024. Vaclav Skala Union Agency. WSCG 2024, 2024-06-03 - 2024-06-06, Pilsen, Tschechien. doi: 10.24132/CSRN.3401.24. ISSN 2464-4625.
PDF
2MB |
Kurzfassung
Learning-based analysis of images is commonly used in the fields of mobility and robotics for safe environmental motion and interaction. This requires not only object recognition but also the assignment of certain properties to them. With the help of this information, causally related actions can be adapted to different circumstances. Such logical interactions can be optimized by recognizing object-assigned properties. Density as a physical property offers the possibility to recognize how heavy an object is, which material it is made of, which forces are at work, and consequently which influence it has on its environment. Our approach introduces an AI-based concept for assigning physical properties to objects through the use of associated images. Based on synthesized data, we derive specific patterns from 2D images using a neural network to extract further information such as volume, material, or density. Accordingly, we discuss the possibilities of property-based feature extraction to improve causally related logics.
elib-URL des Eintrags: | https://elib.dlr.de/210420/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | AI-based Density Recognition | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2024 | ||||||||||||||||||||
Erschienen in: | 32. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2024, WSCG 2024 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.24132/CSRN.3401.24 | ||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||
Verlag: | Vaclav Skala Union Agency | ||||||||||||||||||||
ISSN: | 2464-4625 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | AI, Density Recognition, Computer Vision | ||||||||||||||||||||
Veranstaltungstitel: | WSCG 2024 | ||||||||||||||||||||
Veranstaltungsort: | Pilsen, Tschechien | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 3 Juni 2024 | ||||||||||||||||||||
Veranstaltungsende: | 6 Juni 2024 | ||||||||||||||||||||
Veranstalter : | 32. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2024 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||
HGF - Programmthema: | Umweltschonender Antrieb | ||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | L CP - Umweltschonender Antrieb | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Virtuelles Triebwerk | ||||||||||||||||||||
Standort: | Augsburg | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Test und Simulation für Gasturbinen > Testbetrieb und Messverfahren | ||||||||||||||||||||
Hinterlegt von: | Müller, Matthias | ||||||||||||||||||||
Hinterlegt am: | 20 Dez 2024 12:32 | ||||||||||||||||||||
Letzte Änderung: | 20 Dez 2024 12:32 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags