elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Counteracting Neuronal Alterations in Space and on Earth. Novel Hydroxynorkeamine Derivatives are Potent Agents to Enhance Synaptic Plasticity in vitro

Kalinski, L. und Weber, H. und Drouvé, N. und Peter, C und Lichterfeld, Y. und Hemmersbach, R. und El Sheikh, S. und Liemersdorf, C. (2023) Counteracting Neuronal Alterations in Space and on Earth. Novel Hydroxynorkeamine Derivatives are Potent Agents to Enhance Synaptic Plasticity in vitro. In: Abstracts & Programmheft 2023 61. Wissenschaftliche Jahrestagung Deutsche Gesellschaft für Luft- und Raumfahrtmedizin (DGLRM) e. V., Seite 51. 61. Jahrestagung der deutschen Gesellschaft für Luft- und Raumfahrtmedizin DGLRM, 2023-10-19 - 2023-10-21, Köln, Deutschland.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://dglrm.de/images/2023/tagungsband-2023.pdf

Kurzfassung

During spaceflight, humans experience a variety of physiological changes due to deviations from accustomed Earth conditions. Specifically, the lack of gravity is responsible for many effects observed in returning astronauts. These impairments can include structural as well as functional changes of the brain and a decline in cognitive performance. However, the underlying physiological mechanisms remain elusive. Alterations in neuronal activity play a central role in neurological disorders and altered neuronal transmission may disturb human cognitive function and thus diminish performance in space. Accordingly, understanding the influence of altered gravity on neuronal activity on the cellular and network level is of high relevance. Neuronal cells are known to be sensitive to influences of altered gravity. By using multi-electrode array (MEA) technology, we advanced electrophysiological investigations covering single-cell to network level responses during exposure to decreased (micro-) or increased (hyper-) gravity conditions. Integration of the MEA device into a custom-built environmental chamber allowed us to conduct experiments on various large gravity research platforms including the DLR human centrifuge, the ZARM drop tower and the MAPHEUS sounding rocket. Here, the spontaneous activity of in vitro human induced pluripotent stem cell (hiPSC)-derived neural networks was recorded in real time. Our data demonstrate that alterations in gravity levels trigger changes in neuronal activity. Hypergravity exposure led to an initial reduction in spiking frequency which was compensated within a minute time range. Upon onset of microgravity, the mean action potential frequency across the neural networks was significantly enhanced and further compensated even below 1g baseline values after less than one minute. Furthermore, neuronal networks especially reacted to acute changes in mechanical loading (hypergravity) or unloading (microgravity). The current study clearly shows the gravity-dependent response of neuronal networks endorsing the importance of further investigations of neuronal activity and its adaptive responses to micro- and hypergravity including transition phases.

elib-URL des Eintrags:https://elib.dlr.de/210365/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Counteracting Neuronal Alterations in Space and on Earth. Novel Hydroxynorkeamine Derivatives are Potent Agents to Enhance Synaptic Plasticity in vitro
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kalinski, L.Laura.Kalinski (at) dlr.dehttps://orcid.org/0009-0009-4447-3460NICHT SPEZIFIZIERT
Weber, H.Cologne University of Applied SciencesNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Drouvé, N.Cologne University of Applied SciencesNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Peter, CCologne University of Applied SciencesNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Lichterfeld, Y.Yannick.Lichterfeld (at) dlr.dehttps://orcid.org/0000-0001-8755-9920NICHT SPEZIFIZIERT
Hemmersbach, R.Ruth.Hemmersbach (at) dlr.dehttps://orcid.org/0000-0001-5308-6715NICHT SPEZIFIZIERT
El Sheikh, S.Cologne University of Applied SciencesNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Liemersdorf, C.Christian.Liemersdorf (at) dlr.dehttps://orcid.org/0000-0001-8407-5226NICHT SPEZIFIZIERT
Datum:Oktober 2023
Erschienen in:Abstracts & Programmheft 2023 61. Wissenschaftliche Jahrestagung Deutsche Gesellschaft für Luft- und Raumfahrtmedizin (DGLRM) e. V.
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Seitenbereich:Seite 51
Status:veröffentlicht
Stichwörter:microelectrode array, neuron, altered gravity
Veranstaltungstitel:61. Jahrestagung der deutschen Gesellschaft für Luft- und Raumfahrtmedizin DGLRM
Veranstaltungsort:Köln, Deutschland
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:19 Oktober 2023
Veranstaltungsende:21 Oktober 2023
Veranstalter :Deutsche Gesellschaft für Luft- und Raumfahrtmedizin (DGLRM) e. V
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Forschung unter Weltraumbedingungen
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R FR - Forschung unter Weltraumbedingungen
DLR - Teilgebiet (Projekt, Vorhaben):R - NeuroSpace
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Luft- und Raumfahrtmedizin > Gravitationsbiologie
Hinterlegt von: Anken, Ralf
Hinterlegt am:09 Dez 2024 12:49
Letzte Änderung:09 Dez 2024 13:02

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.