Agarwal, Siddhant und Tosi, Nicola und Hüttig, Christian und Greenberg, David und Bekar, Ali (2024) Determination of statistical steady states of thermal convection aided by machine learning predictions. Europlanet Science Congress EPSC 2024, 2024-09-08 - 2024-09-13, Berlin, Germany. doi: 10.5194/epsc2024-394.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://meetingorganizer.copernicus.org/EPSC2024/EPSC2024-394.html
Kurzfassung
imulating thermal convection in Earth and planetary interiors is crucial for various applications, including benchmarking numerical codes, deriving scaling laws for heat transfer in complex flows, determining mixing efficiency and the characteristic spatial wavelengths of convection. However, reaching a statistically-steady state in these simulations, even in 2D, can be computationally expensive. While choosing "close-enough" initial conditions can significantly speed simulations up, this selection process can be challenging, especially for systems with multiple controlling parameters. This work explores how machine learning can be leveraged to identify optimal initial conditions, ultimately accelerating numerical convection simulations on their path to a statistically-steady state.
elib-URL des Eintrags: | https://elib.dlr.de/210318/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||
Titel: | Determination of statistical steady states of thermal convection aided by machine learning predictions | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2024 | ||||||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Band: | 17 | ||||||||||||||||||||||||
DOI: | 10.5194/epsc2024-394 | ||||||||||||||||||||||||
Seitenbereich: | EPSC2024-394 | ||||||||||||||||||||||||
Name der Reihe: | EPSC Abstracts | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | mantle convection, numerical methods, machine learning | ||||||||||||||||||||||||
Veranstaltungstitel: | Europlanet Science Congress EPSC 2024 | ||||||||||||||||||||||||
Veranstaltungsort: | Berlin, Germany | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 8 September 2024 | ||||||||||||||||||||||||
Veranstaltungsende: | 13 September 2024 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erforschung des Weltraums | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EW - Erforschung des Weltraums | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Exploration des Sonnensystems | ||||||||||||||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Planetenforschung > Planetenphysik Institut für Planetenforschung > Planetare Sensorsysteme | ||||||||||||||||||||||||
Hinterlegt von: | Tosi, Dr. Nicola | ||||||||||||||||||||||||
Hinterlegt am: | 10 Dez 2024 08:46 | ||||||||||||||||||||||||
Letzte Änderung: | 10 Dez 2024 08:46 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags