elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Atmospheric water abundance of the ice giants - a H2/H2O phase separation approach

Cano Amoros, Marina und Tosi, Nicola und Nettelmann, Nadine (2024) Atmospheric water abundance of the ice giants - a H2/H2O phase separation approach. Europlanet Science Congress EPSC 2024, 2024-09-08 - 2024-09-13, Berlin, Germany. doi: 10.5194/epsc2024-944.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://meetingorganizer.copernicus.org/EPSC2024/EPSC2024-944.html

Kurzfassung

Linking the interior and atmospheric abundances of giant planets is a crucial step in understanding their formation, interior structure, and evolution [1]. In the case of Uranus and Neptune, there are still major uncertainties regarding their bulk composition and distribution of elements. In this work, we present predictions of the atmospheric water abundance of the ice giants, which can reveal important insights into their internal structures. Interior models constrained by the observed gravitational harmonics J2 and J4 indicate that the interiors are composed of a H/He-rich envelope atop an ice/rock-rich interior [2]. To explain such a structure, the phase separation of the two major constituents, water and molecular hydrogen, has been proposed as a possible explanation for this structure [3]. In this scenario, the demixing of hydrogen and water would lead to rain-out of water, leaving the atmosphere depleted of water over time. Here, we employ H2-H2O phase diagrams constrained by experimental data up to 4 GPa [4,5,6] (Figure 1) to predict the atmospheric water abundance over the planets’ evolution (Figure 2). We simulate the process of demixing by applying mass conservation and show that phase separation can occur over a wide range of assumed initial bulk water abundances and may have started already billions of years ago, with higher initial water abundances leading to colder interiors and earlier onsets of demixing. We find that water rain-out can substantially reduce the atmospheric water abundance down to levels between 0.05-0.15wt% whilst the deep water abundance remains essentially primordial. We also compare the gravity field of our ice giant models to the observed J2 and J4 values [7], noting that the latter also include a contribution from the winds. We compute J2, and J4 both for the models constrained by the H2-H2O phase diagrams and for unconstrained models where the Z-poor/Z-rich transition is variable. We find a preference for models with a water-poor/water-rich transition at 5-15 GPa. For the constrained model, this could imply that the water-poor/water-rich transition could be gradual, or that further transitions perhaps in the C-H system play a role, or that J4 is substantially reduced by zonal winds. This work connects volatile abundances to gravity field and interior structure of the ice giants, and in light of the exciting Uranus Flagship mission, we stress the importance of obtaining gravity field data as well as in-situ abundance measurements from an atmospheric probe coupled with remote sensing. Such measurements could provide important constraints for the deep water abundance.

elib-URL des Eintrags:https://elib.dlr.de/210317/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Atmospheric water abundance of the ice giants - a H2/H2O phase separation approach
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Cano Amoros, MarinaMarina.CanoAmoros (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Tosi, Nicolanicola.tosi (at) dlr.dehttps://orcid.org/0000-0002-4912-2848NICHT SPEZIFIZIERT
Nettelmann, NadineUniversity of California (UCSC), Santa Cruz, USAhttps://orcid.org/0000-0002-1608-7185NICHT SPEZIFIZIERT
Datum:2024
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Band:17
DOI:10.5194/epsc2024-944
Seitenbereich:EPSC2024-944
Name der Reihe:EPSC Abstracts
Status:veröffentlicht
Stichwörter:Gas Giants, interior structure
Veranstaltungstitel:Europlanet Science Congress EPSC 2024
Veranstaltungsort:Berlin, Germany
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:8 September 2024
Veranstaltungsende:13 September 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erforschung des Weltraums
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EW - Erforschung des Weltraums
DLR - Teilgebiet (Projekt, Vorhaben):R - Exploration des Sonnensystems
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Planetenforschung > Planetenphysik
Hinterlegt von: Tosi, Dr. Nicola
Hinterlegt am:10 Dez 2024 08:39
Letzte Änderung:10 Dez 2024 08:39

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.